Math, asked by andprasad99, 9 months ago

Solve 3x - 5x+2; the Quadratic
Equation in completing Square
method​

Answers

Answered by Anonymous
6

 \large\bf\underline{Given:-}

  • quadratic equation :- 3x² -5x + 2

 \large\bf\underline {To \: find:-}

  • Value of x by completing the square method.

 \huge\bf\underline{Solution:-}

\rm \dashrightarrow \: 3 {x}^{2}  - 5x + 2 \\  \\ \rm \dag \: divide \: the \: equation \: by \: 3   \\  \\ \rm \dashrightarrow \:  \:  \frac{ 3{x}^{2} }{3}  -  \frac{5x}{3}  +  \frac{2}{3} \\  \\ \rm \dashrightarrow \:  {x}^{2}  -    \frac{  5x}{3}  +  \frac{2}{3}   = 0\\  \\ \rm \dag \: add \:  (\frac{5}{6} ) {}^{2}   \: on \: both \: sides \: of \: the \: equations \\  \\ \rm \dashrightarrow \:  {x}^{2}  -  \frac{5x}{3}  +  \frac{25}{36}  =  \frac{ - 2}{3}  +  \frac{25}{36}  \\  \\ \rm \dashrightarrow \: (x +  \frac{5}{6} ) {}^{2}  =   - \frac{2}{3}  +  \frac{25}{36}  \\  \\ \rm \dashrightarrow \: (x +  \frac{5}{6} ) {}^{2}  =  \frac{ - 24 + 25}{36}  \\  \\ \rm \dashrightarrow \:(x +  \frac{5}{6} ) {}^{2}  =  \frac{1}{36}  \\  \\ \rm \dashrightarrow \:x +  \frac{5}{6}  =  \pm \sqrt{ \frac{1}{36} }  \\  \\ \rm \dashrightarrow \:x +  \frac{5}{6}  =   \pm\frac{1}{6}  \\  \\ \rm \dashrightarrow \:x =  \frac{1}{6}  -  \frac{5}{6}  \\  \\ \rm \dashrightarrow \:x =   \cancel\frac{ - 4}{6}  \\  \\ \bf \dashrightarrow \:x =  \frac{ - 2}{3}  \\  \\ \rm \dashrightarrow \:or \: x =  \frac{ - 1}{6}  -  \frac{5}{6}  \\  \\ \rm \dashrightarrow \:x =  \frac{ - 6}{6}  \\  \\ \bf \dashrightarrow \:x =  - 1

 \large\bigstar \bf \: x =  - 1 \: or \: x =  \frac{ - 2}{3}  \\  \\

Answered by Anonymous
6

\bf\large{\underline{Question:-}}

Solve 3x - 5x+2; the Quadratic Equation in completing Square method.

\bf\large{\underline{Given:-}}

  • 3x-5x+2

\bf\large{\underline{To\:solve:-}}

  • 3x-5x+2 using completing square method.

\bf\large{\underline{Solution:-}}

  • 1st we divide the equation by 3 And after that we add (5/6)^2 in both side.

\bf\large{\underline{According\:to\:Question:-}}

\tt→ \frac{3x^2}{3}-\frac{5x}{3}+\frac{2}{3}=0\\\tt→ x^2-\frac{5x}{3}+\frac{2}{3}=0\\\tt→ x^2-\frac{5x}{3}+(\frac{5}{6})^2=\frac{-2}{3}+(\frac{5}{6})^2\\\tt→ (x+\frac{5}{6})^2=\frac{-2}{3}+\frac{25}{36}\\\tt→ (x+\frac{5}{6})^2=\frac{-24+25}{36}\\\tt→(x+\frac{5}{6})^2=\frac{1}{36}\\\tt→ (x+\frac{5}{5})=±\sqrt\frac{1}{36}\\\tt→ x+\frac{5}{6}=±\frac{1}{6}\\\tt→ x=\frac{1}{6}-\frac{5}{6}\\\tt→ x=\frac{-4}{6}\\\tt→ x=\frac{-2}{3} \\\tt→ or\: x=\frac{-1}{6}-\frac{5}{6}\\\tt→ x=\frac{-6}{6}\\\tt→ x=-1

Hence,

\bf\large{\underline{\fbox{x=\frac{-2}{3}}}}

Or,

\bf\large{\underline{\fbox{x=-1}}}

Similar questions