Math, asked by ashulk482, 9 months ago

solve 5x+10y=35 , 2x-4y=28​

Answers

Answered by Anonymous
12

 \huge \mathbb \red{ANSWER}

_________________________________

 \bf \underline{Question}

solve 5x+10y=35 , 2x-4y=28

____________________________________

 \bf \underline{step \: by \: step \: explanation}

 \rm{⟹5x + 10y = 35.........eq(1)}

 \rm{⟹2x - 4y = 28 ........eq(2)}

 \tt{now \: divide \: by \: 2}

 \rm{⟹x + 2y = 14}

 \rm{⟹x = 14y - 2y}

then

 ⟹\rm{5(14 - 2y) + 3y = 35}

 \rm{⟹70 - 10y + 3y = 35}

 \rm{⟹70 - 7y  = 35}

 \rm{⟹70 - 35 = 7y}

 \rm{⟹35 = 7y}

 \rm{⟹y =  \frac{35}{7}}

 \rm{⟹y = 5}

_______________________________

 \rm{⟹x = 14 - 2y}

 \rm{⟹14  - 2(5)}

 \rm{⟹x = 4}

I hope it's help uh

Answered by GalacticCluster
6

solution:-

=> 5x + 10y = 35 ......eq(1)

=> 2x - 4y = 28 .......eq(2)

Divided by 5 in eq (1)

=> x + 2y = 7

=> x = 7 - 2y

putting the above value in equation (2)

=> 2x - 4y = 28

=> 2(7 - 2y) - 4y = 28

=> 14 - 4y - 4y = 28

=> 14 - 8y = 28

=> - 8y = 28 -14

=> -8y = 14

=> y = -14/8

or, y = -7/4

And,

=>x = 7 - 2y

=> x = 7 - 2(-7/4)

=> x = 7 +7/2

=> x = 21/2

Now,

verified the solutions,

on putting the value x and y in equation(1)

=> 5x +10y = 35

=> 5(21/2)+10(-7/4) = 35

=> 105/2 -35/2 = 35

=> 105-35/2= 35

=> 70/2 = 35

=> 35 = 35

L. H. S = R. H. S

__________________________

Similar questions