Math, asked by schhavi488, 5 months ago

Solve
A conical tent is 24m high and radius of its base is 7m. Find
slant height of the tent.please solve the problem ​

Answers

Answered by Anonymous
4

 \huge \sf \underline \red{Answer : }

\sf \underline{ \therefore \: slant \: height \: of \: tent \: is \: 25m}

 \huge \sf \underline \pink{Given : }

  • A conical tent is 24m high

  • Radius of its bases is 7m

 \huge \sf \underline \blue{To \:  find : }

  • slant height of the tent

 \huge \sf \underline \orange{solution : }

 \sf \underline{Given : }

  • Height (h) = 24m

  • Radius (r) = 7m

 \sf \underline{let \: slant \: height \: be \: l}

 \:  \:  \:  \:  \:  \sf \underline{we \: know \: that}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \red{ \tt{ {l}^{2}  =  {h}^{2}  +  {r}^{2} \: }}}}} }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \implies \:  {l}^{2} =  {(24)}^{2}  +  {(7)}^{2} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \implies \:  {l}^{2} =  576 + 49}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \implies \:  {l}^{2} =625  }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \implies \:  {l} =625  }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \implies \:  {l} =  \sqrt{625}   }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \implies \:  {l} =  \sqrt{25 {} \: ^{2} }  }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \implies \:  {l} =  {25m {} \: }  }

 \sf \underline{ \therefore \: slant \: height \: of \: tent \: is \: 25m}

_____________________________________________________

 \sf \huge \underline{diagram : }

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{r = 7}}\put(9.5,10){\sf{h = 24}}\end{picture}

Answered by Anonymous
0

eheudnc8ejndsindd8nxjdmdidjncjxndndjsjwosknxnxnwisjxnxnjdjdncnejejds

Similar questions