Solve by 'CROSS MULTIPLICATION' method
![7. \: find \: \alpha \: and \: \beta \: \: in \: \: terms \: \: \\ of \: x \: , \: \: y \: if \\ 7. \: find \: \alpha \: and \: \beta \: \: in \: \: terms \: \: \\ of \: x \: , \: \: y \: if \\](https://tex.z-dn.net/?f=7.+%5C%3A+find+%5C%3A++%5Calpha++%5C%3A+and+%5C%3A++%5Cbeta++%5C%3A++%5C%3A+in+%5C%3A++%5C%3A+terms+%5C%3A++%5C%3A+%5C%5C++of+%5C%3A+x+%5C%3A+%2C+%5C%3A++%5C%3A+y+%5C%3A+if+%5C%5C+)
![\alpha x {}^{3} - \beta y = x - y \alpha x {}^{3} - \beta y = x - y](https://tex.z-dn.net/?f=+%5Calpha+x+%7B%7D%5E%7B3%7D++-++%5Cbeta+y+%3D+x+-+y)
and
![x \alpha + \beta y {}^{2} = xy {}^{2} x \alpha + \beta y {}^{2} = xy {}^{2}](https://tex.z-dn.net/?f=x+%5Calpha++%2B++%5Cbeta+y+%7B%7D%5E%7B2%7D++%3D+xy+%7B%7D%5E%7B2%7D+)
Ans:
![( \frac{y(xy + x - y)}{x(x {}^{2} y + 1)}, \frac{x {}^{ {3}} y {}^{2} - x + y}{y(x {}^{2} y + 1)} ) ( \frac{y(xy + x - y)}{x(x {}^{2} y + 1)}, \frac{x {}^{ {3}} y {}^{2} - x + y}{y(x {}^{2} y + 1)} )](https://tex.z-dn.net/?f=%28+%5Cfrac%7By%28xy+%2B+x+-+y%29%7D%7Bx%28x+%7B%7D%5E%7B2%7D+y+%2B+1%29%7D%2C+%5Cfrac%7Bx+%7B%7D%5E%7B+%7B3%7D%7D+y+%7B%7D%5E%7B2%7D++-+x+%2B+y%7D%7By%28x+%7B%7D%5E%7B2%7D+y+%2B+1%29%7D+%29)
Class 10
Content Quality Solution Required
❎ Don't Spamming ❎
Answers
Answered by
7
Let us learn the rule first.
Two equations are -
a₁x + b₁y + c₁ = 0
a₂x + b₂y + c₂ = 0
Then the solution be presented as
x/(b₁c₂ - b₂c₁) = y/(a₂c₁ - a₁c₂) = 1/(a₁b₂ - a₂b₁)
Given equations are
x³α - yβ - (x - y) = 0 ...(i)
xα + y²β - xy² = 0 ...(ii)
By cross multiplication, from (i) and (ii), we get
α/{(- y) (- xy²) + y² (x - y)}
= β/{- x (x - y) + xy² (x³)}
= 1/{x³y² - x (- y)}
or, α/(xy³ + xy² - y³)
= β/(- x² + xy + x⁴y²)
= 1/(x³y² + xy)
Then,
α = (xy³ + xy² - y³)/(x³y² + xy)
= [{y² (xy + x - y)}/{xy (x²y + 1)}]
= {y (xy + x - y)}/{x (x²y + 1)}
and
β = (- x² + xy + x⁴y²)/(x³y² + xy)
= [{x (x³y² - x + y)}/{xy (x²y + 1)}]
= (x³y² - x + y)/{y (x²y + 1)}
∴ the required solution be
α = {y (xy + x - y)}/{x (x²y + 1)},
β = (x³y² - x + y)/{y (x²y + 1)}
#
Similar questions