solve by matrix method x + y + z = 7 \\ 2x - y + z = 5\\ 3x + y - z = 8
Answers
Answered by
3
Hello,
from the first you get:
x=7-y-z
substituting in the second one, we obtain:
2(7-y-z)-y+z=5;
14-2y-2z-y+z=5;
-3y-z=5-14;
-3y-z=-9;
3y+z=9;
z=9-3y
substituting in the third, we obtain:
3(7-y-z)+y-(9-3y)=8;
21-3y-3z+y-9+3y=8;
21-3y-3(9-3y)+y-9+3y=8;
21-3y-27+9y+y-9+3y=8;
10y-15=8;
10y=8+15;
10y=23;
y=23/10
therefore:
z=9-3y=9-3×23/10=9-69/10=90-69/10=21/10
and
x=7-23/10-21/10=70-23-21/10=26/10=13/5
So you have:
x=13/5, y=23/10 , z=21/10
bye :-)
from the first you get:
x=7-y-z
substituting in the second one, we obtain:
2(7-y-z)-y+z=5;
14-2y-2z-y+z=5;
-3y-z=5-14;
-3y-z=-9;
3y+z=9;
z=9-3y
substituting in the third, we obtain:
3(7-y-z)+y-(9-3y)=8;
21-3y-3z+y-9+3y=8;
21-3y-3(9-3y)+y-9+3y=8;
21-3y-27+9y+y-9+3y=8;
10y-15=8;
10y=8+15;
10y=23;
y=23/10
therefore:
z=9-3y=9-3×23/10=9-69/10=90-69/10=21/10
and
x=7-23/10-21/10=70-23-21/10=26/10=13/5
So you have:
x=13/5, y=23/10 , z=21/10
bye :-)
vishal9198:
solve matrix method
Answered by
2
Solving the system of simultaneous equations by
using matrix method:
x + y + z = 7
2x - y + z = 5
3x + y - z = 8
MATRIX METHOD:
[tex]=\left[\begin{array}{cccc}0&1&0&23/10\\0&3&1&9\\1&0&0&13/5\end{array}\right]\\\\=\left[\begin{array}{cccc}0&1&0&23/10\\0&0&1&21/10\\1&0&0&13/5\end{array}\right] [/tex]
So answer is : x = 13/5; y = 23/10 , z = 21/10.
It is preferable to give some numbers which are easy to calculate.
x + y + z = 7
2x - y + z = 5
3x + y - z = 8
MATRIX METHOD:
[tex]=\left[\begin{array}{cccc}0&1&0&23/10\\0&3&1&9\\1&0&0&13/5\end{array}\right]\\\\=\left[\begin{array}{cccc}0&1&0&23/10\\0&0&1&21/10\\1&0&0&13/5\end{array}\right] [/tex]
So answer is : x = 13/5; y = 23/10 , z = 21/10.
It is preferable to give some numbers which are easy to calculate.
Similar questions