Solve by quadratic formula or completion square
14. abx^2 - ( a^2 + b^2 )x + ab = 0
Ans: a / b , b / a
Standard:- 10
Content Quality Solution Required
❎ Don't Spamming ❎
Answers
Answered by
5
abx² - (a² + b²)x + ab = 0
[ by quadratic formula ]
where, a' = ab ,b' = -(a² + b²) , c = ab
b'² - 4ac = [-(a² + b²)]² - 4(ab)(ab)
b'² - 4ac = a⁴ + b⁴ + 2(ab)² - 4(ab)²
b'² - 4ac = [ a⁴ + b⁴ - 2(ab)² ]
b'² - 4ac = (a² - b²)²
so, x = [ -b ± √{b² - 4ac} ]/2a
x = [ - {-(a² + b²)} ± √{(a² - b²)} ]/2(ab)
x = [ +(a² + b²) ± (a² - b²) ]/2ab
taking ( - ve).
x = [ a² + b² - a² + b² ]/2ab
x = 2b²/2ab
x = b/a
taking (+ve)
x = [ (a² + b²) + (a² - b²) ]/2ab
x = (a² + b² + a² - b²)/2ab
x = 2a²/2ab
x = a/b
so, x = a/b , x = b/a
now , by completing square root,
abx² - (a² + b²)x + ab = 0
[ multiply both side by "ab" ]
(abx)² - ab(a² + b²)x + (ab)² = 0
(abx)² - (abx)(a² + b²) + (ab)² = 0
[ (abx)² - 2(abx)(a² + b²)/2 + (a² + b²)²/4 ] - (a² + b²)²/4 + (ab)² = 0
[ abx - (a² + b²)/2 ]² - [a⁴ + b⁴ + 2(ab)²]/4 + (ab)² = 0
[ abx - (a² + b²)/2 ]² = [a⁴ + b⁴ +2(ab)² - 4(ab)² ]/4
[abx - (a² + b²)/2]² = [a⁴ + b⁴ - 2(ab)²] /4
[abx - (a² + b²)/2]² = (a² - b²)²/4
taking Square Root both side,
[abx - (a² + b²)/2] = ±(a² - b²)/2
taking (+ve).
[abx - (a² + b²)/2] = (a² - b²)/2
abx = (a² - b²)/2 + (a² + b²)/2
abx = (a² - b² + a² + b²)/2
x = 2a²/2ab
x = a/b
taking (-ve).
[abx - (a² + b²)/2 ] = -(a² - b²)/2
abx = (a² + b²)/2 - (a² - b²)/2
abx = (a² - b² - a² + b²)/2
x = 2b²/2ab
x = b/a, x = a/b
[ by quadratic formula ]
where, a' = ab ,b' = -(a² + b²) , c = ab
b'² - 4ac = [-(a² + b²)]² - 4(ab)(ab)
b'² - 4ac = a⁴ + b⁴ + 2(ab)² - 4(ab)²
b'² - 4ac = [ a⁴ + b⁴ - 2(ab)² ]
b'² - 4ac = (a² - b²)²
so, x = [ -b ± √{b² - 4ac} ]/2a
x = [ - {-(a² + b²)} ± √{(a² - b²)} ]/2(ab)
x = [ +(a² + b²) ± (a² - b²) ]/2ab
taking ( - ve).
x = [ a² + b² - a² + b² ]/2ab
x = 2b²/2ab
x = b/a
taking (+ve)
x = [ (a² + b²) + (a² - b²) ]/2ab
x = (a² + b² + a² - b²)/2ab
x = 2a²/2ab
x = a/b
so, x = a/b , x = b/a
now , by completing square root,
abx² - (a² + b²)x + ab = 0
[ multiply both side by "ab" ]
(abx)² - ab(a² + b²)x + (ab)² = 0
(abx)² - (abx)(a² + b²) + (ab)² = 0
[ (abx)² - 2(abx)(a² + b²)/2 + (a² + b²)²/4 ] - (a² + b²)²/4 + (ab)² = 0
[ abx - (a² + b²)/2 ]² - [a⁴ + b⁴ + 2(ab)²]/4 + (ab)² = 0
[ abx - (a² + b²)/2 ]² = [a⁴ + b⁴ +2(ab)² - 4(ab)² ]/4
[abx - (a² + b²)/2]² = [a⁴ + b⁴ - 2(ab)²] /4
[abx - (a² + b²)/2]² = (a² - b²)²/4
taking Square Root both side,
[abx - (a² + b²)/2] = ±(a² - b²)/2
taking (+ve).
[abx - (a² + b²)/2] = (a² - b²)/2
abx = (a² - b²)/2 + (a² + b²)/2
abx = (a² - b² + a² + b²)/2
x = 2a²/2ab
x = a/b
taking (-ve).
[abx - (a² + b²)/2 ] = -(a² - b²)/2
abx = (a² + b²)/2 - (a² - b²)/2
abx = (a² - b² - a² + b²)/2
x = 2b²/2ab
x = b/a, x = a/b
Answered by
6
⬇⤵⬇⤵⬇⤵✌✌✌❕
abx²- (a²+b²)x+ab=0
(by quadratic formula)
where, a'=ab,b'=-(a²+b²),c=ab
b'²-4ac=[-(a²+b²)]²-4(ab)(ab)
b'²-4ac=a⁴+b⁴-2(ab)1
b'²-4ac=[a⁴+b⁴-2(ab)²]
b'²-4ac=(a²-b²)1
so, x= [-b ±√{b²-4ac}]/2a
x=[-{-(a²+b²)}±√{(a²-b²)/2ab
taking (-ve)
x=[a²+b²-a²+b²)/2ab
x=2b²/2ab
x=b/a
taking (+ve)
x=[(a²+b²)+(a²-b²)]/2ab
x= (a²+b²+a²-b²)/2ab
x=2a²/2ab
x=a/b
so, x= a/b
and.
x=b/a
Similar questions