Math, asked by abcdefgh95, 1 month ago

solve by substitution method 3x-y=3 and 8x-y=8
plz help me it's urgent..​

Answers

Answered by anindyaadhikari13
11

\texttt{\textsf{\large{\underline{Solution}:}}}

Given equations:

→ 3x - y = 3 – (i)

→ 8x - y = 8 – (ii)

We have to solve the equation by substitution method.

From (i), y = 3x - 3.

Substituting the value of y in (ii), we get:

→ 8x - (3x - 3) = 8

→ 8x - 3x + 3 = 8

→ 5x + 3 = 8

→ 5x = 8 - 3

→ 5x = 5

→ x = 1

Now:

→ y = 3x - 3

→ y = 3 × 1 - 3

→ y = 3 - 3

→ y = 0

Therefore:

\tt \implies Answer =  \begin{cases} \tt x = 1 \\ \tt y = 0 \end{cases}

\texttt{\textsf{\large{\underline{Steps To Solve}:}}}

  1. Solve one of the given equations for one of the variables.
  2. Substitute the value of the variable in other equation.
  3. Solve the resulting single variable equation. Substitute the value of the variable in any of the equations to find the value of the second variable.

anindyaadhikari13: Thanks for the brainliest ^_^
Answered by Anonymous
12

\tt \red{Solution:  - }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \tt{3x - y= 3 -  -  -  -  - equation \: 1}

\footnotesize \tt{8x - y = 8-  -  -  -  - equation \: 2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \tt \red{In  \: equation \: 1}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \tt{3x - y= 3 }

\footnotesize \tt{x  \: = \:  } \tt{ \frac{3 + y}{3}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \tt \red{In  \: equation \: 2}

\footnotesize \tt{8x - y = 8}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \tt \red{Now \:  substitute \:  the  \: value  \: of  \: x \:  in  \: eq \: 2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{8 }  \tt{ \: (\frac{3 + y}{3}) } \footnotesize \tt{  \: - y = 8}

 \tt{\frac{24 \:  + \:  8y}{3}} \footnotesize \tt{  \: - \:  y = 8}

\tt{\frac{24 \:  + \:  8y}{3} -  \frac{3y}{3} }\footnotesize \tt{= 8}

\tt{\frac{24 \:  + \:  8y  \: -  \: 3y}{3} } \footnotesize \tt{ \: = 8}

\tt{\frac{24 \:   -  \: 5y}{3} }\footnotesize \tt{ \:  = 8}

\footnotesize \tt{24 \:   -  \: 5y= 8 \times 3}

\footnotesize \tt{24 \:   -  \: 5y=24}

\footnotesize \tt{ -  \: 5y=24 - 24}

\footnotesize \tt{ -  \: 5y=0}

\footnotesize \tt{ y \: = \:  } \tt{\frac{0}{ - 5} }

 \boxed{ \underline{ \underline{\footnotesize \tt \red{ y= 0 }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \tt \red{In  \: equation \: 2}

\footnotesize \tt{8x - y = 8}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \tt \red{Now \:  substitute \:  the  \: value  \: of  \: y\:  in  \: eq\: 2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \tt{8x - 0= 8}

\footnotesize \tt{8x = 8  + 0}

\footnotesize \tt{8x = 8 }

\footnotesize \tt{x } \tt{ \: =  \frac{8}{8}  }

\footnotesize \tt{x } \tt{ \: =   \cancel\frac{8}{8}  }

 \boxed{ \underline{ \underline{\footnotesize \tt \red{ x= 1 }}}}

Similar questions