Math, asked by afreen1249, 5 months ago

Solve by using quadratic formula
xsquare + 4x + 5 =0 ​

Answers

Answered by mounikagopu443
1

Answer:

i-2,-2-i( imaginary roots)

Step-by-step explanation:

x^2+4x+5=0

formula: -b+/-√b^2-4ac divided by 2a

= (-4+/-√-4 )/2

= i-2,-i-2

Answered by Flaunt
301

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto {x}^{2}  + 4x + 5 = 0

Here ,this equation is in the form of a quadratic equation so we'll use quadratic formula for finding the roots:

 \sf \boxed{\bold{x} = {\red{ \dfrac{  - b\pm \sqrt{ {b}^{2} - 4ac } }{2a}}}}

 \sf \: a = 1 ;\: b = 4\:\&\: c = 5

Now,put the values in the formula:

\sf \longmapsto \: x =  \dfrac{- 4  \pm \sqrt{( {4)}^{2} - 4(1)(5) }  }{2(1)}

\sf \longmapsto \: x =  \dfrac{ - 4 \pm \sqrt{16 - 20} }{2}

\sf \longmapsto \: x =  \dfrac{ - 4 \pm \sqrt{-4} }{2}

Here, The discriminant b²-4ac <0,so there will be two complex roots .

\sf \longmapsto \:  x =  \dfrac{ - 4 \pm 2i}{2}

\sf \longmapsto \: x =  -  \dfrac{4}{2}  \pm \dfrac{2i}{2}

\sf \longmapsto \: x =  - 2 \pm1i

Possible values of x are :

x=-2+1i

x=-2-1i

Similar questions