Math, asked by upretysaurav4, 15 days ago

Solve :cosec thita =cot thita + root 3



Answers

Answered by Siddhi155
0

Answer:

cotθ+cosec θ=

3

sin θ

cosθ

+

sin θ

1

=

3

Taking square both side,

cos

2

θ+1+2cosθ=3−3cos

2

θ [\sin ce sin

2

θ=1−cos

2

θ]

4cos

2

θ+2cosθ−2=0

4cos

2

θ+4cosθ−2cosθ−2=0

We get

(cosθ+1)(4cosθ−2)=0

When,

(cosθ+1)=0

cosθ=−1

cosπ=cos(2n+1)π=−1

Hence θ=(2n+1)π.

When,

(4cosθ−2)=0

cosθ=

2

1

cos

3

π

=cos(2nπ±

3

π

)=

2

1

Hence, θ=(2nπ±

3

π

)

Step-by-step explanation:

Mark me as brainlist

Answered by surendernitu123
0

 \csc(x)  =  \cot(x)  +  \sqrt{3}  \\  =  \\  \frac{1}{ \sin(x) }  =  \frac{ \cos(x) }{ \sin(x) } \\  =  \\  \sin(x)  =  \cos(x)  \sin(x)  \\  =  \\  \cos(x)  = 1 \\

therefore x= 0°

Similar questions