Solve :cosec thita =cot thita + root 3
Answers
Answered by
0
Answer:
cotθ+cosec θ=
3
sin θ
cosθ
+
sin θ
1
=
3
Taking square both side,
cos
2
θ+1+2cosθ=3−3cos
2
θ [\sin ce sin
2
θ=1−cos
2
θ]
4cos
2
θ+2cosθ−2=0
4cos
2
θ+4cosθ−2cosθ−2=0
We get
(cosθ+1)(4cosθ−2)=0
When,
(cosθ+1)=0
cosθ=−1
cosπ=cos(2n+1)π=−1
Hence θ=(2n+1)π.
When,
(4cosθ−2)=0
cosθ=
2
1
cos
3
π
=cos(2nπ±
3
π
)=
2
1
Hence, θ=(2nπ±
3
π
)
Step-by-step explanation:
Mark me as brainlist
Answered by
0
therefore x= 0°
Similar questions