Math, asked by vedantika10, 11 months ago

solve following simultaneous equation 1/x+1/y=12 ; 3/x-2/y=1​

Answers

Answered by gmarathe087
8

x=1/5

y=1/7

hope it helps u

Attachments:
Answered by Anonymous
10

Answer:

[x =  \frac{1}{5}  \: and \: y =  \frac{1}{7}] .]

Step-by-step explanation:

 \frac{1}{x}  +  \frac{1}{y}  = 12 \:  \: ......eq1

 \frac{3}{x}  -  \frac{2}{y}  = 1 \:  \:  \:  \:  ......eq2

let \:  \frac{1}{x}  \: be \: u. \\   \:  \:  \:  \:  \:  \:  \\   \:  \:  \:  \:  \:  \: \frac{1}{y}  \: be \: v.

Then,

u + v = 12 \:  \:  \:  \: .......eq3

3u - 2v = 1 \:  \:   .......eq4

Now on further solving eq 3 & eq 4, we get

 =  > u + v = 12 \\  =  > v = 12 - u

On Putting this value in eq 4,

 =  > 3u - 2(12 - u) = 1 \\  =  > 3u - 24 + 2u = 1 \\  =  > 5u = 25 \\  =  > u = 5

Thus \:  if  \:  \: u =5  \:  \\ then  \:    \: v=(12-5)=7

as \:  \frac{1}{x}  = u \\     =>\frac{1}{x}  = 5 \\=> x =  \frac{1}{5}

And,

as \:  \frac{1}{y}  = v \\  =>\frac{1}{y}  = 7 \\=> y =  \frac{1}{7}

Similar questions