Math, asked by kanishkk60, 1 year ago

solve for x 2 (x2 +1/x2) -9(x+1/x) +14 =0​

Answers

Answered by TrAnSLIMit
3

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
82

Given :-

  • \mathsf{\;\;2\bigg(x^2 + \dfrac{1}{x^2}\bigg) - 9\bigg(x + \dfrac{1}{x}\bigg) + 14 = 0}

To Find :-

  • Value of x

Solution :-

We are given :-

  • \mathsf{\:  \: \:  \:  \:  \:  \: \:\pink{\;\;2\bigg(x^2 + \dfrac{1}{x^2}\bigg) - 9\bigg(x + \dfrac{1}{x}\bigg) + 14 = 0}}\\

\mathsf{\bigg(x^2 + \dfrac{1}{x^2}\bigg)\;can\;be\;written\;as :}\\

\mathsf\green{{\;\; \bigg(x^2 + \dfrac{1}{x^2}\bigg) = \bigg(x + \dfrac{1}{x}\bigg)^2 - 2}}\\

\mathsf{\implies 2\bigg[\bigg(x + \dfrac{1}{x}\bigg)^2 - 2\bigg] - 9\bigg(x + \dfrac{1}{x}\bigg) + 14 = 0}\\

\mathsf{Let\;us\; assume \; that :- \green{\bigg(x + \dfrac{1}{x}\bigg) = A}}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2(A^2 - 2) - 9A + 14 = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2A^2 - 4 - 9A + 14 = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2A^2 - 9A + 10 = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2A^2 - 4A - 5A + 10 = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2A(A - 2) - 5(A - 2) = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies (A - 2)(2A - 5) = 0}

\mathsf{\:  \: \:  \:  \:  \:  \:\pink{ \::\implies A = 2\;\;(or)\;\; A = \dfrac{5}{2}}}

\underline{\textsf\purple{{Case : 1}}}\\

  • \mathsf\green{{\bigg(x + \dfrac{1}{x}\bigg) = 2}}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies \bigg(\dfrac{x^2 + 1}{x}\bigg) = 2}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies x^2 + 1 = 2x}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies x^2 - 2x + 1 = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies (x - 1)^2 = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies (x - 1) = 0}\\

 \sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies{\underline{\boxed{\frak{\pink{x =1}}}}}\:\bigstar\\\\

\underline{\textsf\purple{{Case : 2}}}\\

  • \mathsf\green{{\bigg(x + \dfrac{1}{x}\bigg) = \dfrac{2}{5}}}

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies \bigg(\dfrac{x^2 + 1}{x}\bigg) = \dfrac{5}{2}}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2(x^2 + 1) = 5x}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2x^2 - 5x + 2 = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2x^2 - 4x - x + 2 = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies 2x(x - 2) - (x - 2) = 0}\\

\mathsf{\:  \: \:  \:  \:  \:  \: \::\implies (x - 2)(2x - 1) = 0}\\

 \sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies{\underline{\boxed{\frak{\pink{x =2\: Or\:  \: \dfrac{1}{2}}}}}}\:\bigstar\\\\

  • Combining the result of case 1 and case 2, we get :-

\therefore\:\underline{\textsf{ Value of x  are  \textbf{1,2,1/2}}}.\\

Similar questions