Math, asked by moksha91, 1 year ago

solve for x:5^x-4=1​


brunoconti: question not clear. please write for hand

Answers

Answered by FelisFelis
2

If 5^x-4= 1 then the value of x=1. If 5^{x-4}=1 then the value of x=4

Step-by-step explanation:

Consider the provided information.

If 5^x-4=1

The solve as shown:

5^x=1+4

5^x=5

Compare the exponent value.

x=1

If the provided equation is 5^{x-4}=1

Taking log both side.

\ln \left(5^{x-4}\right)=\ln \left(1\right)

Apply the rule: \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)

\left(x-4\right)\ln \left(5\right)=\ln \left(1\right)

\frac{\left(x-4\right)\ln \left(5\right)}{\ln \left(5\right)}=\frac{\ln \left(1\right)}{\ln \left(5\right)}

The value of ln(1)=0

x-4=0

x=4

Hence, If 5^x-4=1 then the value of x=1. If 5^{x-4}=1 then the value of x=4.

#Learn more

What is the properties and formula of logarithms.​

https://brainly.in/question/9360867

Answered by nandankumargupta5555
1

Answer:

solve for x:5^x-4=1

Step-by-step explanation:

answer is right

Similar questions