Math, asked by Saitr3ap2ratalkhosai, 1 year ago

solve for x :(a/x-a) + (b/x-b) =2 ; x not equal to a,b

Answers

Answered by 4076stkabirdio
17

I hope it will help you. :-

Attachments:
Answered by mysticd
8

Answer:

x= [3(a+b)±√9a²+9b²-14ab]/4

Explanation:

We have

\frac{a}{(x-a)}+\frac{b}{(x-b}=2

LCM of (x-a)and (x-b) = (x-a)(x-b)

Now,

\frac{a(x-b)+b(x-a)}{(x-a)(x-b)}=2

\implies \frac{ax-ab+bx-ab}{x^{2}-ax-bx+ab}=2

\implies ax+bx-2ab=2(x^{2}-ax-bx+ab)

\implies 0=2x^{2}-2ax-2bx+2ab-ax-bx+2ab

\implies 2x^{2}-3(a+b)x+4ab=0

Compare this with Ax²+Bx+C=0

we get,

A=2 , B = -3(a+b), C = 4ab

Discreminant (D) = -4AC

= [-3(a+b)]²-4×2×4ab

= 9(a+b)²-32ab

= 9(++2ab)-32ab

= 9a²+9b²+18ab-32ab

= 9a²+9b²-14ab

Now ,

x = [-B±√D]/(2A)

= {-[-3(a+b)]±√9a²+9b²-14ab}/4

x= [3(a+b)±√9a²+9b²-14ab]/4

••••

Similar questions