Math, asked by kushagramardwand, 1 year ago

Solve for x :
cos x - cos 3x - sin 2x = 0.​

Answers

Answered by MaheswariS
1

Answer:

The solutions are

x=\frac{n\pi}{2},\:n\in\,Z

x=n\pi+(-1)^n\frac{\pi}{6},\:n\in\,Z

Step-by-step explanation:

Solve for x :

cos x - cos 3x - sin 2x = 0.​

cosx-cos3x-sin2x=0

Using

\boxed{cosC-cosD=-2\,sin(\frac{C+D}{2})\,sin(\frac{C-D}{2})}

-2\,sin(\frac{x+3x}{2})\,sin(\frac{x-3x}{2})-sin2x=0

-2\,sin2x\,sin(-x)-sin2x=0

2\,sin2x\,sinx-sin2x=0

sin2x(2sinx-1)=0

sin2x=0\:(or)\:2sinx-1=0

\text{ case(i): }sin2x=0

2x=n\pi,\:n\in\,Z

\implies\:\boxed{x=\frac{n\pi}{2},\:n\in\,Z}

\text{case(ii):}2sinx-1=0

sinx=\frac{1}{2}

sinx=sin\frac{\pi}{6}

\implies\,\boxed{x=n\pi+(-1)^n\frac{\pi}{6}\:n\in\,Z}

Similar questions