Solve it.................
Attachments:
Answers
Answered by
2
Given:
= > (a - b)^2 cos^2 c/2 + (a + b)^2 sin^2 c/2
= > (a - b)^2 (1 - sin^2 c/2) + (a + b)^2 sin^2 c/2
= > (a - b)^2 - (a - b)^2(sin^2 c/2) + (a + b)^2 sin^2 c/2
= > (a - b)^2 + (a + b)^2 sin^2 c/2 - (a - b)^2 sin^2 c/2
= > a^2 + b^2 - 2ab + a^2 + b^2 + 2ab sin^2 c/2 - (a^2 + b^2 - 2ab) sin^2 c/2
= > a^2 + b^2 - 2ab + a^2 + b^2 + 2ab sin^2 c/2 - a^2 - b^2 + 2ab sin^2 c/2
= > a^2 + b^2 - 2ab + 4absin^2 c/2
= > a^2 + b^2 - 2ab[1 - 2sin^2 c/2]
= > a^2 + b^2 - 2ab[cos2c/2]
We know that 1 - 2sin^2 theta = cos2theta
= > a^2 + b^2 - 2ab[cosc]
= > a^2 + b^2 - 2abcosc
We know that a^2 + b^2 -2abcosc = c^2
= > c^2.
Hope this helps!
= > (a - b)^2 cos^2 c/2 + (a + b)^2 sin^2 c/2
= > (a - b)^2 (1 - sin^2 c/2) + (a + b)^2 sin^2 c/2
= > (a - b)^2 - (a - b)^2(sin^2 c/2) + (a + b)^2 sin^2 c/2
= > (a - b)^2 + (a + b)^2 sin^2 c/2 - (a - b)^2 sin^2 c/2
= > a^2 + b^2 - 2ab + a^2 + b^2 + 2ab sin^2 c/2 - (a^2 + b^2 - 2ab) sin^2 c/2
= > a^2 + b^2 - 2ab + a^2 + b^2 + 2ab sin^2 c/2 - a^2 - b^2 + 2ab sin^2 c/2
= > a^2 + b^2 - 2ab + 4absin^2 c/2
= > a^2 + b^2 - 2ab[1 - 2sin^2 c/2]
= > a^2 + b^2 - 2ab[cos2c/2]
We know that 1 - 2sin^2 theta = cos2theta
= > a^2 + b^2 - 2ab[cosc]
= > a^2 + b^2 - 2abcosc
We know that a^2 + b^2 -2abcosc = c^2
= > c^2.
Hope this helps!
siddhartharao77:
:-)
Answered by
1
...........................
Attachments:
Similar questions