Math, asked by lokeshsai989, 2 months ago

Solve it by differentiating on Right hand side rather than integrating on the left hand side.

Attachments:

Answers

Answered by Anonymous
17

Solution

Take LHS

\to\bf \int\dfrac{dx}{x\sqrt{1-x^3} }

Now Multiply and divide  by x²

\to\bf \int\dfrac{x^2dx}{x^3\sqrt{1-x^3} }

Now using Substitution method

\to\bf\sqrt{1-x^3} =t

\bf\to \dfrac{d(\sqrt{1-x^3} )}{dx} =\dfrac{dt}{dx}

\to\bf \dfrac{-3x^2}{2\sqrt{1-x^2} } dx=dt

\to\bf x^2dx=\dfrac{-2}{3} \sqrt{1-x^3} dt

We can Write as \bf\sqrt{1-x^3} =t

\to\bf x^2dx=\dfrac{-2}{3} tdt

To Eliminate x³ we can write as

\to\bf\sqrt{1-x^3} =t

\to\bf{1-x^3} =t^2

\to\bf{x^3} =1-t^2

Now

\to\bf \int\dfrac{x^2dx}{x^3\sqrt{1-x^3} }

Now by putting the value we get

\to\bf\int\dfrac{-2tdt}{3(1-t^2)t} =\dfrac{-2}{3} \int\dfrac{dt}{(1-t^2)}

Now take common ' - ' from denominator , we get

\to\bf\dfrac{2}{3} \int\dfrac{dt}{(t^2-1)}

Now using the identities (t²-1²)=(t-1)(t+1)

\to\bf\dfrac{2}{3} \int\dfrac{dt}{(t-1)(t+1)}=\dfrac{1}{3} \int\dfrac{(t-1)-(t+1)}{(t-1)(t+1)}dt \\

\bf\to\dfrac{1}{3} \bigg\{\int\dfrac{(t-1)}{(t-1)(t+1)}dt-\int\dfrac{(t+1)}{(t-1)(t+1)} dt\bigg\}

\bf\to\dfrac{1}{3} \bigg\{ \int\dfrac{dt}{(t-1)} -\int\dfrac{dt}{(t+1)} \bigg\}

\bf\to\dfrac{1}{3} \bigg(ln|t-1|-ln|t+1|\bigg)+c

By Using the log properties we can write as

\bf\to\dfrac{1}{3} ln\bigg|\dfrac{t-1}{t+1} \bigg|+c

Now put the value of t , we get

\bf\to\dfrac{1}{3} ln\bigg|\dfrac{\sqrt{1-x^3} -1}{\sqrt{1-x^3} +1} \bigg|+c

Answer

So value of a = 1/3  and  b = -1


amansharma264: great
Similar questions