Math, asked by rakshit9847, 6 months ago

solve it fast pls it is important​

Attachments:

Answers

Answered by ILLUSTRIOUS27
5

Given

 \bf(1 +  {m}^{2} ) {x}^{2}  + 2mcx +  {c}^{2}  -  {a}^{2}  = 0 \: has \: equal \: roots

To prove

 \bf \:  {c}^{2}  =  {a}^{2} (1 +  {m}^{2} )

Concept used

 \bf \: d =  {b}^{2}  - 4ac

Proof

 \because \bf roots \: are \: real \: and \: equal \\  \therefore \bf d = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

 \bf \: d =  {b}^{2}  - 4ac \:  \:  \:  \:  \:  \:  \\  \\  \implies \bf \: 0 =  {b}^{2}  - 4ac \: or \:  {b}^{2}  = 4ac \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bf \: here \: a = 1 +  {m}^{2}   \\  \bf \: b = 2mc \\ \bf c =  {c}^{2}  -  {a}^{2}  \\  \\  \implies \bf  ({2mc})^{2}  = 4(1 +  {m}^{2} )( {c}^{2}  -  {a}^{2} )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies \bf 4 {m}^{2}  {c}^{2}  = 4( {c}^{2}  -  {a}^{2}  +  {m}^{2}  {c}^{2}  -  {m}^{2}  {a}^{2} )  \:  \:  \: \\  \\  \implies \bf  {m}^{2}  {c}^{2}  =  {c}^{2}  -  {a}^{2}  +  {m}^{2}  {c}^{2}  -  {m}^{2}  {a}^{2} ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \bf  0 =  {c}^{2}  -  {a}^{2}  -  {m}^{2}  {a}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \implies  {c}^{2}  =  {a}^{2}  +  {m}^{2}  {a}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \underline{ \boxed{ \huge \bf \:  {c}^{2} =  {a}^{2}(1 +  {m}^{2} )  }}  \:  \:  \: \\  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{hence \: proved}

Note

This question was most important question and easy question for all 10th students if you do with the above method you will rock this cbse board

Similar questions