Math, asked by Anonymous, 1 year ago

Solve it
Maths
Algebra

Attachments:

Anonymous: ans is 3

Answers

Answered by Mankuthemonkey01
13
Given,


a + b + c = 0

=> a + b = (- c)

Similarly,

b + c = (- a)

a + c = (- b)



Then put the respective values and solve.

Make the denominators same.

Take out abc as common.


You will be left with a³ + b³ + c³ in numerator and abc in denominator.


Now if a + b + c = 0

Then a³ + b³ + c³ = 3abc


Cancel abc in denominator with numerator and answer will be 3



Refer the attachment


Hope it helps dear friend ☺️✌️
Attachments:

Anonymous: Great mere bhai
Mankuthemonkey01: Thanks mere bhai xP
Answered by Shubhendu8898
6

Given,

a +b + c = 0

a + b = -c ....................i)

b + c = -a ..............ii)

c + a = -b ..........iii)

Now,

\frac{(a+b)^{2}}{ab}+\frac{(b+c)^{2}}{bc}+\frac{(c+a)^{2}}{ca}\\\;\\=(\frac{a^{2}+b^{2}+2ab}{ab})+(\frac{b^{2}+c^{2}+2bc}{bc})+(\frac{c^{2}+a^{2}+2ca}{ca})\\\;\\=(\frac{a^{2}}{ab}+\frac{b^{2}}{ab}+\frac{2ab}{ab})+(\frac{b^{2}}{bc}+\frac{c^{2}}{bc}+\frac{2bc}{bc})+(\frac{c^{2}}{ca}+\frac{a^{2}}{ca}+\frac{2ac}{ca})\\\;\\=(\frac{a}{b}+\frac{b}{a}+2)+(\frac{b}{c}+\frac{c}{b}+2)+(\frac{c}{a}+\frac{a}{c}+2)\\\;\\=(\frac{b+c}{a})+(\frac{c+a}{b})+(\frac{a+b}{c})+2+2+2\\\;\\\text{Using eq i),ii) and iii)}\\\;\\

=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}+6\\\;\\=-1-1-1+6\\\;\\=6-3\\\;\\=3

Hence,

\frac{(a+b)^{2}}{ab}+\frac{(b+c)^{2}}{bc}+\frac{(c+a)^{2}}{ca}=3



Mankuthemonkey01: WoW. Great work.
Anonymous: Reallu
Anonymous: Really
Similar questions