Solve itne quadratic equation:
x^2 -90x + 900=0
nancyyy:
The*
Answers
Answered by
0
hope this helps u dear plzz mark as brainliest ans :-)
ask more doubts to me based on this chap I will be ready to ans
ask more doubts to me based on this chap I will be ready to ans
Attachments:
Answered by
1
Hey Nancy,
Here is your solution.
Let , α and ß are its zeroes.
In this quadratic equation,
Coefficient of x² ( a ) = 1
Coefficient of x ( b ) = -90
Constant term ( c ) = 900
Now,
⇒Sum of zeroes = -b/a
⇒ α + ß = - ( -90 ) ÷ 1
∴ α + ß = 90 --------------- ( 1 )
And,
⇒ Product of zeroes = c/a
⇒ αß = 90/1
∴ αß = 900 ----------- ( 2 )
To find the value of α and ß , we have to first find the value of ( α - ß ), to do so we have ( α + ß ) and ( αß ).
Let's find it !
We know that,
⇒ ( α - ß )² = α² + ß² - 2αß
⇒ ( α - ß )² = α² + ß² + 2αß - 4αß
⇒ ( α - ß )² = ( α + ß )² - 4αß
By substituting the values of ( 1 ) and ( 2 ),
⇒ ( α - ß )² = ( 90 )² - 4 × 90
⇒ ( α - ß )² = 8100 - 3600
⇒ ( α - ß )² = 4500
⇒ ( α - ß ) = √ ( 4500 )
⇒ ( α - ß ) = √ ( 2 × 2 × 3 × 3 × 5 × 5 × 5 )
⇒ ( α - ß ) = √ ( 2² × 3² × 5² × 5 )
⇒ ( α - ß ) = 2 × 3 × 5 √5
∴ ( α - ß ) = 30√5 ------------------- ( 3 )
By adding the ( 1 ) and ( 3 ),
⇒ α + ß + α - ß = 90 + 30√5
⇒ 2α = 2 ( 45 + 15√5 )
⇒ α = 2 ( 45 + 15√5 ) ÷ 2
∴ α = ( 45 + 15√5 )
By substituting the value of α in ( 1 ),
⇒ α + ß = 90
⇒ 45 + 15√5 + ß = 90
⇒ ß = 90 - 45 - 15√5
∴ ß = 45 - 15√5.
Now,
If α and ß be the zeroes of x² - 90x + 900.
So,
⇒ x² - 90x + 900 = ( x - α ) ( x - ß )
By substituting the value of α and ß,
⇒ x² - 90x + 900 = { x - ( 45 + 15√5 ) } { x - ( 45 - 15√5 ) }
⇒ x² - 90x + 900 = ( x - 45 - 15√5 ) ( x - 45 + 15√5 )
The required answer is ( x - 45 - 15√5 ) ( x - 45 + 15√5 ).
Hope it helps !!
Here is your solution.
Let , α and ß are its zeroes.
In this quadratic equation,
Coefficient of x² ( a ) = 1
Coefficient of x ( b ) = -90
Constant term ( c ) = 900
Now,
⇒Sum of zeroes = -b/a
⇒ α + ß = - ( -90 ) ÷ 1
∴ α + ß = 90 --------------- ( 1 )
And,
⇒ Product of zeroes = c/a
⇒ αß = 90/1
∴ αß = 900 ----------- ( 2 )
To find the value of α and ß , we have to first find the value of ( α - ß ), to do so we have ( α + ß ) and ( αß ).
Let's find it !
We know that,
⇒ ( α - ß )² = α² + ß² - 2αß
⇒ ( α - ß )² = α² + ß² + 2αß - 4αß
⇒ ( α - ß )² = ( α + ß )² - 4αß
By substituting the values of ( 1 ) and ( 2 ),
⇒ ( α - ß )² = ( 90 )² - 4 × 90
⇒ ( α - ß )² = 8100 - 3600
⇒ ( α - ß )² = 4500
⇒ ( α - ß ) = √ ( 4500 )
⇒ ( α - ß ) = √ ( 2 × 2 × 3 × 3 × 5 × 5 × 5 )
⇒ ( α - ß ) = √ ( 2² × 3² × 5² × 5 )
⇒ ( α - ß ) = 2 × 3 × 5 √5
∴ ( α - ß ) = 30√5 ------------------- ( 3 )
By adding the ( 1 ) and ( 3 ),
⇒ α + ß + α - ß = 90 + 30√5
⇒ 2α = 2 ( 45 + 15√5 )
⇒ α = 2 ( 45 + 15√5 ) ÷ 2
∴ α = ( 45 + 15√5 )
By substituting the value of α in ( 1 ),
⇒ α + ß = 90
⇒ 45 + 15√5 + ß = 90
⇒ ß = 90 - 45 - 15√5
∴ ß = 45 - 15√5.
Now,
If α and ß be the zeroes of x² - 90x + 900.
So,
⇒ x² - 90x + 900 = ( x - α ) ( x - ß )
By substituting the value of α and ß,
⇒ x² - 90x + 900 = { x - ( 45 + 15√5 ) } { x - ( 45 - 15√5 ) }
⇒ x² - 90x + 900 = ( x - 45 - 15√5 ) ( x - 45 + 15√5 )
The required answer is ( x - 45 - 15√5 ) ( x - 45 + 15√5 ).
Hope it helps !!
Similar questions
English,
7 months ago
India Languages,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago
Physics,
1 year ago