Math, asked by jamrenovung, 10 months ago

solve pls and help me... ​

Attachments:

Answers

Answered by Anonymous
26

Solution

Let, theta = x

Given:-

  • tan x = p/q

Find:-

  • (cos x + sin x )/(cos x - sin x)

To prove:-

  • (p sin x - q cos x)/(p sin x + q cos x) = (p²-q²)/(p²+q²

Explanation

We know,

tan x = (perpendicular )/(Base) = p/q

By, Pythagoras Theorem

(Hypotenuse )² = (perpendicular)²+ (Base)²

➠ (Hypotenuse) = √[(p²+q²)]

Now, calculate other trigonometry ratio

☞ sin x = (perpendicular)/(Hypotenuse)

☞ sin x = p/√(p²+q²)

cos x = (Base)/(Hypotenuse)

☞ cos x = q/√(p²+q²)

First calculate,

☞ (cos x + sin x )/(cos x - sin x)

keep above value,

➠[ {q/√(p²+q²)} + { p/√(p²+q²)}]/[{q/√(p²+q²} - p/√(p²+q²)}]

➠ [(p+q)/√(p²+q²)] / [ (q-p)/√(p²+q²)]

➠ [(p+q)/√(p²+q²)] × [√(p²+q²)/(q-p)]

➠ (p+q)/(q-p). [ Ans]

____________________

Prove

Take L.H.S.,

☞ (p sin x - q cos x)/(p sin x + q cos x)

keep value of cos x and sin x

➠ [ p . p/√(p²+q²) - q. q/√(p²+q²] / [ p. p/√(p²+q²) + q. q/√(p²+q²)]

➠ [(p²-q²)/√(p²+q²)] / [ (p²+q²)/√(p²+q²)]

➠ [(p²-q²)/√(p²+q²)] × [√(p²+q²)/(p²+q²)]

[(p²-q²)/(p²+q²)]

= R.H.S

that's proved.

Similar questions