solve pls and help me...
Answers
Solution
Let, theta = x
Given:-
- tan x = p/q
Find:-
- (cos x + sin x )/(cos x - sin x)
To prove:-
- (p sin x - q cos x)/(p sin x + q cos x) = (p²-q²)/(p²+q²
Explanation
We know,
☛ tan x = (perpendicular )/(Base) = p/q
By, Pythagoras Theorem
☞ (Hypotenuse )² = (perpendicular)²+ (Base)²
➠ (Hypotenuse) = √[(p²+q²)]
Now, calculate other trigonometry ratio
☞ sin x = (perpendicular)/(Hypotenuse)
☞ sin x = p/√(p²+q²)
☞ cos x = (Base)/(Hypotenuse)
☞ cos x = q/√(p²+q²)
First calculate,
☞ (cos x + sin x )/(cos x - sin x)
keep above value,
➠[ {q/√(p²+q²)} + { p/√(p²+q²)}]/[{q/√(p²+q²} - p/√(p²+q²)}]
➠ [(p+q)/√(p²+q²)] / [ (q-p)/√(p²+q²)]
➠ [(p+q)/√(p²+q²)] × [√(p²+q²)/(q-p)]
➠ (p+q)/(q-p). [ Ans]
____________________
Prove
Take L.H.S.,
☞ (p sin x - q cos x)/(p sin x + q cos x)
keep value of cos x and sin x
➠ [ p . p/√(p²+q²) - q. q/√(p²+q²] / [ p. p/√(p²+q²) + q. q/√(p²+q²)]
➠ [(p²-q²)/√(p²+q²)] / [ (p²+q²)/√(p²+q²)]
➠ [(p²-q²)/√(p²+q²)] × [√(p²+q²)/(p²+q²)]
➠ [(p²-q²)/(p²+q²)]
= R.H.S
that's proved.