Math, asked by sumitverma0108, 1 year ago

solve question 5 and question 6

Attachments:

Answers

Answered by kvnmurty
2

5 a) we take the complementary D.E. part of the given ODE.

    y’’ – 2 tan x  y’ + 5 y = 0

    This is of the form: y’’+ p(x) y’ + q(x) y = 0

     p(x) = -2 tan x         q(x) = 5

    Solution:  y(x) = u(x) * v(x).

    Integrating factor= v(x) = exp(- integral p(x)/2 dx)

       v = exp(int  tanx dx) = exp(Ln sec x) = sec x

       v’ = sec x tan x    ,   v’’ = sec x tan^2 x + sec^3 x= secx (2tan^2 x +1)

     Q(x) = v’’ + p v’+ q v = sec x [2 tan^2 x + 1 – 2 tan^2 x + 5]= 6 sec x

  Normal form of ODE:   v(x) u’’(x) + Q(x) u(x) = 0

       u’’(x) + 6 u(x) = 0   => ω^2 = 6

       u(x) = A Sin (ωx+θ)

So complementary solution:   y(x) = A Sin(ωx+θ) Sec x

Particular Solution of:     y’’ – 2 tan x  y’ + 5 y = e^x  sec x

       y(x) = K e^x Sec x,   y’= K e^x Sec x (tan x + 1)

       y’’(x) = 2 K e^x Sec x [tan^2 x + tan x + 1]

So 2K e^x Sec x [tan^2 x +tan x+1]- 2K e^x sec x tan x (tan x+1) + 5K e^x sec x = e^x sec x

   2K [tan^2 x +tan x+1]- 2K tan x (tan x+1) + 5K = 1

   K = 1/7

Hence the complete solution:  A Sin(√6 x+θ) Sec x + 1/7*e^x  Sec x

===========================

5      b) Assuming a LCR series circuit.

- R i(t) – L di(t)/dt + Q/C = E(t)=0,    i(t) = -dQ(t)/dt,  Q(t)=charge on Capacitor.

     d^2 Q/dt^2 + R/L dQ/dt + Q(t)/LC = 0…….ODE : p(t)= R/L ,  q(t)=1/LC

      Q(t)= u(t) v(t).   v(t) = exp(- integral  R/2L dt) = exp(-R t/2L)

      v’ = -R/2L * v,   v’’ = R^2/4L^2  * v

      Complementary solution :  v u’’ + (v’’ + p v’ + q v) u = 0

=>   v u’’+ (R^2/4L^2 – R^2/2L^2 + 1/LC) v u = 0

      =>  u’’ + (1/LC - R^2/4L^2)  u = 0    => Sinusoidal solution

     =>  ω = √[4LC – R^2C^2] /2LC]=40 rad/sec,   u(t) = A Sin(ωt + θ)

       Q(t) = A exp(-Rt/2L)  Sin(ωt+θ) = A exp(-20 t) Sin(40t+θ)

       Q(t=0) = 5 Coul.  =>  A Sinθ = 5

        i(t)=-Q’(t) = - A exp(-20t)*[40 Cos(40t+θ)- 20 Sin(40t+θ)]

        i(t=0) = 0,  So  Tanθ =2,  θ = 1.107 rad or 63.4 deg.

           So  A = 5 /Sinθ = 5.59 Coul

       Q(t=0.01sec) = 5.59 exp(-0.2) Sin(0.4+1.107) = 4.56 Coul

====================

5c)    x y’  + y Ln y = x y e^x

Let  y = e^z     or   Ln y = z   and    y’(x) = e^z * z’(x)

 =>   ODE : x z’ e^z + e^z z = x e^z e^x

       z’ + 1/x * z = e^x

Compare with z’(x) + p(x) z(x) = q(x).   p(x)=1/x , q(x)=e^x

 Integrator fn = μ(x)=exp( int  p(x) dx] = exp(Ln x) = x

Solution: z(x) = 1/μ(x)  * [integral  μ(x) q(x) dx  + C]

                         = 1/x * [x e^x – e^x + C]

          y(x) =  exp[ e^x – e^x /x + C/x]

=================================

 

6 ) b)    d^2 x/dt^2 + 2 m dx/dt + n^2 x = a cos pt

 C.F. :   x’’ + 2 m x’ + n^2 x  = 0

  x(t) = u(t) v(t)  ,  p(t)= 2m   q(t)= n^2

   v(t) = exp[- integral m dt] = exp(-mt),

   v ’ = - m v,     v’’ = m^2 v

   Q(t) = v’’+ p v’ + q v = (m^2 - 2m^2 + n^2) v

   N. F. :  v(t) u’’(t) + Q(t) u(t) = 0   or   u’’ + (n^2-m^2) u =0

   As n > m >0,   ω = √(n^2-m^2)

  u(t) = A Sin(ωt+θ)  =>

Complementary Solution: x(t) = A exp(-mt) Sin(ωt+θ)

  So after about  t = 6/m the value of x(t)=amplitude is very low.

  So the vibrations are damped out down.

Particular solution:

     x2(t)= A Sin (pt+ф) + B

     x2’(t) = A p Cos(pt+ф) ,   x2’’(t) = -A p^2 Sin(pt+ф)

=>  -A p^2 Sin(pt+ф) + 2m A p Cos(pt+ф) + n^2 A Sin(pt+ф)+n^2B = a cos pt

  A (n^2-p^2) sin pt cosф + A(n^2-p^2) cos pt sinф + 2mAp Cos pt cosф

      – 2 mAp sin pt sinф + n^2 B = a cos pt

 Compare coefficients of sin pt and cos pt...

   A (n^2-p^2) cosф -2mAp sinф = 0     => Tan ф = (n^2 – p^2)/2pm)

   A (n^2-p^2) sinф +2mAp cosф = a   => 2Apm [sin^2ф+cos^2ф]cosф = a

   A = a Sec ф/(2pm)

Complete Solution: A exp(-mt) Sin(ωt+θ) + a Sec ф /(2pm) * Sin(pt+ф)


kvnmurty: click on red heart thanks above pls
sumitverma0108: thankyou bhai...bhai solve all the question of me please...check my profile..quickly bhai
sumitverma0108: bhai what about 6(a) part
Similar questions