Physics, asked by Anonymous, 11 months ago

solve question in above pic​

Attachments:

Answers

Answered by Anonymous
19

\huge\underline\orange{\mathcal Answer}

\large\blue{\boxed{\mathcal Max\:Kinetic\:Energy(KE)=18J}}

\huge\orange{\mathcal Solution}

From Work Energy Theorem :-

\huge{\boxed{\mathcal KE={\int{\limits^t_t(F)dx}}}}

\large{\mathcal KE={\int{\limits^x_0(9-{x}^{2})}}}

\large{\mathcal KE=9x-{\frac{{x}^{3}}{3}}}

For maximum Kinetic Energy \large{\mathcal {\frac{dK}{dx}=0}}

\large{\mathcal {\frac{dK}{dx}}=9-{x}^{2}}

\large{\mathcal 9={x}^{2}}

x=3

For Maximum kinetic energy

\large{\mathcal Kmax=9(3)-{\frac{{3}^(3}}{3}}}

\large{\mathcal Kmax={\frac{54}{3}}}

\huge{\boxed{\mathcal Kmax=18J}}

\huge\orange{\mathcal Hope\:It\:Helps!!!}

Similar questions