Math, asked by Anonymous, 10 months ago

Solve question number m.​

Attachments:

Answers

Answered by rishu6845
12

Answer:

x \:  = a \: or \: b

Step-by-step explanation:

Given \:  =  >  \\   \dfrac{ {a}^{2} \: (x - b) }{(a - b)}  -  {x}^{2}  \:  =  \dfrac{ {b}^{2} \: (a - x) }{(b - a)}

To \: find \:  =  >  \\ value \: of \: x

Solution =  >  \\  \dfrac{ {a}^{2}(x - b) }{a - b}  -  {x}^{2}  =  \dfrac{ {b}^{2}(a - x) }{(b - a)}

 =  >  \dfrac{ {a}^{2}(x - b) -  {x}^{2}  (a - b)}{a - b}  =  -  \dfrac{ {b}^{2}(a - x) }{(a - b)}

(a - b)  \: cancel \: out \: from \: each \: side \: we \: get

 =  >  {a}^{2} (x - b) -  {x}^{2} (a - b) =  -  {b}^{2} (a - x)

 =  >  {a}^{2} x -  {a}^{2} b -  {x}^{2}(a - b) =  -  {b}^{2}a +  {b}^{2}  x

 =  >  -  {x}^{2} (a - b) +  {a}^{2} x -  {b}^{2} x -  {a}^{2} b +  {b}^{2} a \:  = 0

 =  >  -  {x}^{2} (a - b) + ( {a}^{2}  -  {b}^{2} )x - ab(a - b) = 0

dividing \: whole \: equation \: by \: (a - b)

 =  >   -  \dfrac{ {x}^{2}(a - b) }{a - b} +  \dfrac{(a + b) \: (a - b)x}{a - b}   -   \dfrac{ab(a - b)}{a - b}   = 0

 =  >  -  {x}^{2}  + (a + b)x - ab = 0

changing \: sign \: of \: whole \: equation

 =  >  {x}^{2}  - (a + b)x + ab = 0

 =  >  {x}^{2}  - ax - bx + ab = 0

 =  >  x \: ( \: x - a \: ) \:  - b \: ( \: x - a \: ) = 0

 =  > ( \: x - a \: ) \: ( \: x - b \: ) \:  = 0

if \\ x - a = 0 \\  =  > x = a

if \\ x - b = 0 \\  =  > x = b

so \\ x \:  =  \: a \: or \: b

Answered by MarshmellowGirl
7

\mathfrak{\huge{\orange{ANSWER}}}

Attachments:
Similar questions
Math, 10 months ago