solve sin 2A + sin 4A + sin 6 A =0
Answers
Solved, sin 2A + sin 4A + sin 6 A = 0.
Given
To solve sin 2A + sin 4A + sin 6A = 0.
Formula's used in the problem :
Sin C + Sin D = 2 Sin Cos
Cos 2A = 2
Steps :
Sin 2A + Sin 4A + Sin 6A = 0
(Sin 6A + Sin 2A) +Sin 4A =0
Using the formula, "Sin C + Sin D = 2 Sin Cos "
2 Sin 4A. Cos 2A + Sin 4A = 0
Sin 4A ( 2Cos 2A + 1 ) = 0
Sin 4A = 0 ; 2 Cos 2A + 1 = 0
Sin 4A = 0
Hence, Sine is “O” which is at the integral multiple of π.
4A = nπ
A = nπ/4
Where, n = integer.
2 Cos 2A + 1 = 0
2 Cos 2A = -1
Cos 2A = (-1)/2
Using formula, “ Cos 2A = 2 "
2 A -1 = -1/2
2 cos² A = 1 - 1/2
2 cos² A = 1/2
cos² A = 1/4
cos² A = (1/2 )²
cos² A = cos² π/3
General solution for,
cos² x = cos² y
x = nπ ± y A = nπ ± π/3
A = π/3 ( 3n±1 )
n = integer.
Therefore, the problem sin 2A + sin 4A + sin 6 A = 0 has solved.
To learn more...
1. brainly.in/question/6820230
2. brainly.in/question/752610