Math, asked by preethzz, 1 year ago

solve:tanФ-cotФ÷sinФcosФ=tan²Ф-cot²Ф

Answers

Answered by leo123
2
We know that tanФ=sinФ/cosФ and cotФ=1/tanФ.
So we need to prove that (tanФ-cotФ)/sinФcosФ=tan²Ф-cot²Ф
                       we can see that (tanФ-cotФ)/sinФcosФ=(tanФ-cotФ)(tanФ+cotФ)
So what we really need to prove is that 1/sinФcosФ=(tanФ+cotФ)
Now we know that (tanФ+cotФ)=sinФ/cosФ + cosФ/sinФ
           or,(sin²Ф+cos²Ф)/(sinФcosФ)=(tanФ+cotФ)
[We know the fact that sin²Ф+cos²Ф=1] hence we have proved that 1/sinФcosФ=(tanФ+cotФ).Thus the problem is solved.

preethzz: the qstn is to prove that the first equation =the other
leo123: Ya havent u got what i have proved?
preethzz: no
leo123: see i deduced that If we prove this thing 1/sinФcosФ=(tanФ+cotФ) then if we multiply (tanФ-cotФ) to both the sides we get the desired result
leo123: Got it?
preethzz: little bit
leo123: What havent u understood?
preethzz: now i got it
preethzz: thnkz yaar
leo123: :D no prob
Answered by kvnmurty
0
[tex] \frac{tan\ \alpha - cot\ \alpha }{sin\ \alpha \ cos\ \alpha } \\ \\ \frac{\frac{sin\ \alpha }{cos\ \alpha } - \frac{cos\ \alpha }{sin\ \alpha } }{sin\ \alpha \ cos\ \alpha } \\ \\ \frac{sin^{2} \alpha - cos^{2} \alpha }{sin^{2} \alpha \ cos^{2} \alpha } \\ \\ \frac{1}{cos^{2} \alpha } - \frac{1}{sin^{2} \alpha } \\ \\ sec^{2}\ \alpha - cosec^{2}\ \alpha \\ \\ R H S : \ \ tan^{2}\ \alpha - cot^{2}\ \alpha = (sec^{2}\ \alpha - 1) - (cosec^{2}\ \alpha - 1) \\ \\ So\ the\ answer. \\ [/tex]

kvnmurty: is this simpler?
Similar questions