Math, asked by chotu61, 1 year ago

solve tan(theta)+sec(theta)=root3

Answers

Answered by mysticd
64

Answer:

\theta = 30\degree

Step-by-step explanation:

 Given \\ tan\theta+sec\theta=\sqrt{3}\:---(1)

We\: know\: the \\ trigonometric \:identity :\\sec^{2}\theta-tan^{2}\theta=1

\implies (sec\theta+tan\theta)(sec\theta-tan\theta)=1

\implies \sqrt{3}\times (sec\theta-tan\theta)=1

\implies sec\theta-tan\theta=\frac{1}{\sqrt{3}}\:---(2)

/* Add equations (1) and (2) ,we get

2sec\theta = \sqrt{3}+\frac{1}{\sqrt{3}}

\implies 2sec\theta= \frac{3+1}{\sqrt{3}}

\implies sec\theta=\frac{4}{\sqrt{3}\times 2}

\implies sec\theta=\frac{2}{\sqrt{3}}

\implies sec\theta=sec 30\degree

\implies \theta = 30\degree

Therefore,

\theta = 30\degree

•••♪

Similar questions