Math, asked by dranjalisingh4, 15 days ago

Solve the equation: 2(3x-5/x+2)-5(x+2/3x-5)=3 , where x is not equal to -2 and 5/3​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

The given equation is

\bf :\longmapsto\:2\bigg(\dfrac{3x - 5}{x + 2} \bigg)  - 5\bigg(\dfrac{x + 2}{3x - 5} \bigg)  = 3 -  -  - (1)

To solve this equation,

Let we assume that,

\red{\rm :\longmapsto\:\dfrac{3x - 5}{x + 2} = y -  -  - (2)}

So equation (1) can be rewritten as

\rm :\longmapsto\:2y - \dfrac{5}{y}  = 3

\rm :\longmapsto\: \dfrac{ {2y}^{2} -  5}{y}  = 3

\rm :\longmapsto\: {2y}^{2} - 5 = 3y

\rm :\longmapsto\: {2y}^{2} -  3y - 5 = 0

\rm :\longmapsto\: {2y}^{2} -  5y + 2y - 5 = 0

\rm :\longmapsto\:y(2y - 5) + 1(2y - 5) = 0

\rm :\longmapsto\:(2y - 5) (y+ 1) = 0

\rm :\longmapsto\:2y - 5 = 0 \:  \:  \: or \:  \:  \:  y+ 1= 0

\bf\implies \:y = \dfrac{5}{2}  \:  \:  \: or \:  \:  \: y =  -  \: 1

So,

Case :- 1

\red{\rm :\longmapsto\:y = \dfrac{5}{2} }

\rm :\longmapsto\:\dfrac{3x - 5}{x + 2} = \dfrac{5}{2}

\rm :\longmapsto\:6x - 10 = 5x + 10

\rm :\longmapsto\:6x - 5x = 10 + 10

\bf :\longmapsto\:x = 20

Now,

Case :- 2

\red{\rm :\longmapsto\:y \:  =  \:  -  \: 1}

\rm :\longmapsto\:\dfrac{3x - 5}{x + 2} =  -  \: 1

\rm :\longmapsto\:3x - 5 =  - x - 2

\rm :\longmapsto\:3x + x =  5- 2

\rm :\longmapsto\:4x =  3

\bf\implies \:x = \dfrac{3}{4}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions