Math, asked by prakashreshu78, 11 months ago

solve the equation by factorisation 4 root 5x2 +3x - 2 root 5​

Answers

Answered by vanshagarwal12qwer
0

Answer:

5x2 + 3x-2

5x2+5x-2x-2

5x(2) -2(x)

5x-2 as 2/5 & 1/2 are the roots .

hope its help u mark it as a brainlist answer

Answered by Sharad001
36

Answer :-

 \implies \boxed{ \frac{ - 2}{ \sqrt{5} } , \frac{ \sqrt{5} }{4}  }\\

To Find :-

→ Factors of the given quadratic equation .

Explanation :-

Given quadratic is -

 \to \sf{ 4 \sqrt{5}  {x}^{2}  + 3x - 2 \sqrt{5}  = 0} \\

Split the middle term .

 \to \sf{4 \sqrt{5}  {x}^{2}   + (8 - 5)x - 2 \sqrt{5}  = 0} \\  \\  \to \sf{4 \sqrt{5}  {x}^{2}  + 8x - 5x - 2 \sqrt{5}  = 0} \\  \\  \to \sf{ 4x( \sqrt{5} x + 2) -  \sqrt{5} ( \sqrt{5} x + 2) = 0} \\  \\  \sf{ \to( \sqrt{5}  x + 2)(4x -  \sqrt{5} ) = 0} \\  \\   \star \:  \: \bf{ \underline{ case }\: (1)} \\  \\  \leadsto \sf{ \sqrt{5} x + 2 = 0 }\\  \\  \leadsto \sf{ \sqrt{5} x =  - 2}

 \leadsto \boxed{ \sf{x =  -  \frac{2}{ \sqrt{5} } }} \\  \\  \star  \:  \bf{\underline{  case }\: (2)} \\  \\  \leadsto \sf{ 4x -  \sqrt{5}  = 0} \\  \\  \leadsto  \boxed{\sf{ x =  \frac{ \sqrt{5} }{4} }}

Verification :-

Replace these values in given quadratic

(1) \to \: 4 \sqrt{5}  {(  \frac{ - 2}{ \sqrt{5} }) }^{2}  + 3 \times  \frac{( - 2)}{ \sqrt{5} }  - 2 \sqrt{5}  = 0 \\  \\  \to \:  \frac{16}{ \sqrt{5} }   -  \frac{6}{ \sqrt{5} }  - 2 \sqrt{5}  = 0 \\  \\  \to \:  \frac{16 - 6 - 10}{ \sqrt{5} }  = 0 \\  \\  \to \boxed{ 0 = 0 }\\  \\ (2) \to \: 4 \sqrt{5}  \times  \frac{ {5} }{16}  + 3 \times  \frac{ \sqrt{5} }{4}  - 2 \sqrt{5}  = 0 \\  \\  \to \:  \frac{5 \sqrt{5} }{4}  +  \frac{3 \sqrt{5} }{4}  - 2 \sqrt{5}  = 0 \\  \\  \to \:  \frac{8 \sqrt{5} - 8 \sqrt{5}  }{4}  = 0 \\  \\  \to \: 0 = 0

hence verified

Similar questions