Math, asked by Aryankhunteta, 1 year ago

solve the equation by factorisation method

Attachments:

Answers

Answered by nitthesh7
1
3 x² - 2√6 x + 2 = 0
_________________________________________________________

= 3 x² - 2√6 x + 2

= 3 x² - √6 x - √6 x + 2

= √3 x(√3 x - √2) -√2(√3 x - √2)

= (√3 x - √2)(√3 x - √2)
_________________________________________________________

Hence x = √2/√3  
_________________________________________________________

☺ ☺ ☺ Hope this Helps ☺ ☺ ☺

nitthesh7: if u find it as most helpful pls mark it as brainliest
nitthesh7: Tq for brainliest
Aryankhunteta: welcome
Answered by varadad25
2

Answer:

The root of the given quadratic equation is

\boxed{\red{\sf\:x\:=\:\frac{\sqrt{2}}{\sqrt{3}}}}

Step-by-step-explanation:

The given quadratic equation is

\sf\:3x^{2}\:-\:2\:\sqrt{6}\:x\:+\:2\:=\:0

\therefore\sf\:3x^{2}\:-\:2\:\sqrt{6}\:x\:+\:2\:=\:0\\\\\implies\sf\:3x^{2}\:-\:\sqrt{6}\:x\:-\:\sqrt{6}\:x\:+\:2\:=\:0\\\\\implies\sf\:3x^{2}\:-\:\sqrt{3}.\:\sqrt{2}\:x\:-\:\sqrt{3}.\:\sqrt{2}\:x\:+\:2\:=\:0\\\\\implies\sf\:\sqrt{3}\:\times\:\sqrt{3}\:x^{2}\:-\:\sqrt{3}\:\times\:\sqrt{2}\:x\:-\:\sqrt{3}\:\times\:\sqrt{2}\:x\:+\:\sqrt{2}\:\times\:\sqrt{2}\:=\:0\:\:\:-\:-\:-\:[\:Expressing\:in\:terms\:of\:square\:root\:]\\\\\implies\sf\:\sqrt{3}\:x\:(\:\sqrt{3}\:x\:-\:\sqrt{2}\:)\:-\:\sqrt{2}\:(\:\sqrt{3}\:x\:-\:\sqrt{2}\:)\:=\:0\\\\\implies\sf\:(\:\sqrt{3}\:x\:-\:\sqrt{2}\:)\:(\:\sqrt{3}\:x\:-\:\sqrt{2}\:)\:=\:0\\\\\implies\sf\:(\:\sqrt{3}\:x\:-\:\sqrt{2}\:)\:=\: 0\\\\\implies\sf\:\sqrt{3}\:x\:=\:\sqrt{2}\\\\\implies\boxed{\red{\sf\:x\:=\:\frac{\sqrt{2}}{\sqrt{3}}}}

Additional Information:

1. Quadratic Equation :

An equation having a degree '2' is called quadratic equation.

The general form of quadratic equation is

ax² + bx + c = 0

Where, a, b, c are real numbers and a ≠ 0.

2. Roots of Quadratic Equation:

The roots means nothing but the value of the variable given in the equation.

3. Methods of solving quadratic equation:

There are mainly three methods to solve or find the roots of the quadratic equation.

A) Factorization method

B) Completing square method

C) Formula method

4. Solution of Quadratic Equation by Factorization:

1. Write the given equation in the form \sf\:{ax^{2}\:+\:bx\:+\:c\:=\:0}

2. Find the two linear factors of the \sf\:LHS of the equation.

3. Equate each of those linear factor to zero.

4. Solve each equation obtained in 3 and write the roots of the given quadratic equation.

Similar questions