Math, asked by AnanyaBaalveer, 5 days ago

Solve the equation:
➜Sin 2x = sinx, -Π ≤ Π​

Answers

Answered by panditkaustubh27
4

Answer:

this is your answer

Step-by-step explanation:

plese make me brainlist

Attachments:
Answered by mathdude500
3

Appropriate Question :-

Solve the equation :-

\rm \: sin2x = sinx,\:  \:  - \pi \leqslant x \leqslant \pi \\

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm \: sin2x = sinx\:  \\

\rm \: sin2x - sinx = 0\:  \\

\rm \: 2 \: sinx \: cosx - sinx = 0\:  \\

\rm \: sinx \: (2cosx - 1) = 0 \\

\rm \: sinx = 0 \:  \:  \: or \:  \:  \: cosx =  \dfrac{1}{2}  \\

Case :- 1

\rm \: sinx = 0 \\

\rm\implies \:x = n\pi  \: \forall \: n \in \: Z

As it is given that,

\rm \:  - \pi \leqslant x \leqslant \pi \\

\rm\implies \:x =  - \pi, \: 0, \: \pi \\

Case :- 2

\rm \:\: cosx =  \dfrac{1}{2}  \\

\rm \:\: cosx = cos \dfrac{\pi}{3}  \\

We know,

\boxed{ \rm{ \:cosx = cosy \: \rm\implies \:x = 2n\pi \pm \: y\: \forall \: n \in \: Z \: }} \\

So, using this, we get

\rm\implies \:x = 2n\pi \pm \: \dfrac{\pi}{3} \: \forall \: n \in \: Z

As it is given that

\rm \:  - \pi \leqslant x \leqslant \pi \\

\rm\implies \:x =  - \dfrac{2\pi}{3}, \:  - \dfrac{\pi}{3}, \: \dfrac{\pi}{3}, \: \dfrac{2\pi}{3} \\

Hence, Solution is

\rm\implies \:x =   - \pi, \: - \dfrac{2\pi}{3}, \:  - \dfrac{\pi}{3}, \:0, \:  \dfrac{\pi}{3}, \: \dfrac{2\pi}{3}, \: \pi \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions