Math, asked by sobanaaa1234567, 4 months ago

solve the following 1/2(-56x+4(2x-7) =(1-3x) -42​

Answers

Answered by itscutegirl12
1

Answer:

Step by Step Solution

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                     2*x-(5*x+1/7+3*x-5/2)=0 

Step by step solution :

STEP1:

5 Simplify — 2

Equation at the end of step1:

1 5 2x - (((5x + —) + 3x) - —) = 0 7 2

STEP2:

1 Simplify — 7

Equation at the end of step2:

1 5 2x - (((5x + —) + 3x) - —) = 0 7 2

STEP3:Rewriting the whole as an Equivalent Fraction

 3.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  7  as the denominator :

5x 5x • 7 5x = —— = —————— 1 7

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

5x • 7 + 1 35x + 1 —————————— = ——————— 7 7

Equation at the end of step3:

(35x + 1) 5 2x - ((————————— + 3x) - —) = 0 7 2

STEP4:

Rewriting the whole as an Equivalent Fraction :

 4.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  7  as the denominator :

3x 3x • 7 3x = —— = —————— 1 7

Adding fractions that have a common denominator :

 4.2       Adding up the two equivalent fractions

(35x+1) + 3x • 7 56x + 1 ———————————————— = ——————— 7 7

Equation at the end of step4:

(56x + 1) 5 2x - (————————— - —) = 0 7 2

STEP5:

Calculating the Least Common Multiple :

 5.1    Find the Least Common Multiple

      The left denominator is :       7 

      The right denominator is :       2 

        Number of times each prime factor

        appears in the factorization of: Prime 

 Factor  Left 

 Denominator  Right 

 Denominator  L.C.M = Max 

 {Left,Right} 71012011 Product of all 

 Prime Factors 7214

      Least Common Multiple:

      14 

Calculating Multipliers :

 5.2    Calculate multipliers for the two fractions

    Denote the Least Common Multiple by  L.C.M 

    Denote the Left Multiplier by  Left_M 

    Denote the Right Multiplier by  Right_M 

    Denote the Left Deniminator by  L_Deno 

    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 2

   Right_M = L.C.M / R_Deno = 7

Making Equivalent Fractions :

 5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

L. Mult. • L. Num. (56x+1) • 2 —————————————————— = ——————————— L.C.M 14 R. Mult. • R. Num. 5 • 7 —————————————————— = ————— L.C.M 14

Adding fractions that have a common denominator :

 5.4       Adding up the two equivalent fractions

(56x+1) • 2 - (5 • 7) 112x - 33 ————————————————————— = ————————— 14 14

Equation at the end of step5:

(112x - 33) 2x - ——————————— = 0 14

STEP6:

Rewriting the whole as an Equivalent Fraction :

 6.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  14  as the denominator :

2x 2x • 14 2x = —— = ——————— 1 14

Adding fractions that have a common denominator :

 6.2       Adding up the two equivalent fractions

2x • 14 - ((112x-33)) 33 - 84x ————————————————————— = ———————— 14 14

STEP7:

Pulling out like terms :

 7.1     Pull out like factors :

   33 - 84x  =   -3 • (28x - 11) 

Equation at the end of step7:

-3 • (28x - 11) ——————————————— = 0 14

STEP8:

When a fraction equals zero :

 8.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

-3•(28x-11) ——————————— • 14 = 0 • 14 14

Now, on the left hand side, the  14  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

   -3  •  (28x-11)  = 0

Equations which are never true:

 8.2      Solve :    -3   =  0

This equation has no solution.

A a non-zero constant never equals zero.

Solving a Single Variable Equation:

 8.3      Solve  :    28x-11 = 0 

 Add  11  to both sides of the equation : 

                      28x = 11

Divide both sides of the equation by 28:

                     x = 11/28 = 0.393

One solution was found :

 x = 11/28 = 0.393

Similar questions