Math, asked by MinahilAsif, 1 year ago

Solve the following equation for real x and y . (3-2i) (x+yi) = 2(x-2yi) + 2i - 1

Answers

Answered by MarkAsBrainliest
64
Solution :

Now, (3 - 2i) (x + iy) = 2 (x - 2iy) + 2i - 1

⇒ 3 (x + iy) - 2i (x + yi) = 2x - 4iy + 2i - 1

⇒ 3x + 3iy - 2ix - 2i²y = 2i - 4iy + 2x - 1

⇒ 3x + 3iy - 2ix + 2y = 2i - 4iy + 2x - 1 ,
since i² = - 1

⇒ (3x + 2y) + i (3y - 2x) = (2x - 1) + i (2 - 4y)

Now, comparing equal and imaginary parts from both sides, we get

3x + 2y = 2x - 1

⇒ 3x - 2x + 2y = - 1

⇒ x + 2y = - 1

⇒ x = - 2y - 1 .....(1)

& 3y - 2x = 2 - 4y

⇒ 3y + 4y - 2x = 2

⇒ 7y - 2x = 2

⇒ 7y - 2 (-2y - 1) = 2

⇒ 7y + 4y + 2 = 2

⇒ 11y = 2 - 2 = 0

⇒ y = 0

Putting y = 0 in (1) no. equation, we get

x = - 2 (0) - 1

⇒ x = 0 - 1

⇒ x = - 1

Therefore, the required solution be

x = - 1 & y = 0.
Similar questions