Math, asked by rishu865, 2 months ago

Solve the following equations by Gauss Jacobi’s Iteration method
15x + 2y + z = 18

2x + 20y − 3z = 19

3x − 6y + 25z = 22​

Answers

Answered by bhopimitesh579
1

Answer:

x1=1.2

y1=0.95

z1=0.88

x2=1.015

y2=0.962

z2=0.964

Answered by VaibhavSR
0

Answer: x=\frac{6}{5},  y=\frac{19}{20} and  z=\frac{22}{25}.

Step-by-step explanation:

  • Given:

        15x+2y+z=18\\2x+20y-3z=19\\3x-6y+25z=22

  • To find: Value of x, y and z by Gauss Jacobi's method.
  • Solution:

        15x+2y+z=18\\

   ⇒ 15x=18-2y-z\\

   ⇒ x=\frac{1}{15}[18-2y-z]

Putting y=0 and z=0.

   ⇒ x=\frac{18}{15}\\

   ⇒ x=\frac{6}{5}

again,

       2x+20y-3z=19

   ⇒ 20y=19-2x+3z

   ⇒ y=\frac{1}{20}[19-2x+3z]

Putting x=0 and z=0.

   ⇒ y=\frac{19}{20}

again,

       3x-6y+25z=22\\

   ⇒ 25z=22-3x+6y

   ⇒ z=\frac{1}{25}[22-3x+6y]

Putting x=0 and y=0.

   ⇒ z=\frac{22}{25}

So,  x=\frac{6}{5},  y=\frac{19}{20} and  z=\frac{22}{25}.

  • Hence, the required values are as above.

#SPJ3

Similar questions