Math, asked by HasanShaikh, 9 months ago

solve the following quadratic equation by factorisation method : 6√3x^2+7x=√3 with full explaination!​

Answers

Answered by chiragagrawal617
1

Answer:

Given : (x - 2) / (x - 3) + (x - 4) / (x - 5) = 10/3

[( x - 2 ) ( x - 5) + (x - 4) (x - 3) ] /[ (x - 5) (x - 3) ] = 10/3  

[ By taking LCM]

[x² - 5x - 2x + 10 + x² - 3x - 4x + 12] / [x² - 3x - 5x + 15] = 10/3

[2x² - 7x + 10 - 7x + 12] / [x² - 8x + 15] = 10/3

[2x² - 14x + 22] / [x² - 8x + 15] = 10/3

3[2x² - 14x + 22] = 10 [x² - 8x + 15]

6x² - 42x + 66 = 10x² - 80x + 150

10x² - 6x²  -  80x  + 42 x + 150 - 66 = 0

4x² -  38x  + 84 = 0

2(2x² - 19x + 42) = 0

2x² - 19x + 42 = 0

2x² - 12x  - 7x + 42 = 0  

2x(x - 6) - 7 (x - 6) = 0  

(x - 6) (2x  - 7) = 0

x - 6 = 0   or  2x - 7 = 0  

x = 6  or  2x = 7

x = 6  or  x = 7/2

Hence, the roots of the quadratic equation (x - 2) / (x - 3) + (x - 4) / (x - 5) = 10/3  are 6 & 7/2

Answered by Parvathyvarma
6

Answer:

Here is the answer

Hope this helps u

Attachments:
Similar questions