Solve the integration Plzz.
Attachments:
Answers
Answered by
4
Integration of f(x) dx , where f(x) = Cos4x / [Cot x - Tan x]
f(x) dx = (2 cos² 2x - 1) / [ (cos² x - sin² x) /(sinx cosx) ] dx
= 1/2 * (2 cos² 2x - 1) * sin 2x / cos 2x dx
Let cos 2x = t. dt = - 2 sin 2x dx
f(x) dx = -1/4 (2 t² - 1)/t * dt
= -1/4 * (2 t - 1/t) dt
= -1/2 t dt + 1/4 * 1/t dt
Integral : -1/4 t² + 1/4 Ln t + K
-1/4 Cos² 2t + 1/4 Ln |Cos 2x | + K
f(x) dx = (2 cos² 2x - 1) / [ (cos² x - sin² x) /(sinx cosx) ] dx
= 1/2 * (2 cos² 2x - 1) * sin 2x / cos 2x dx
Let cos 2x = t. dt = - 2 sin 2x dx
f(x) dx = -1/4 (2 t² - 1)/t * dt
= -1/4 * (2 t - 1/t) dt
= -1/2 t dt + 1/4 * 1/t dt
Integral : -1/4 t² + 1/4 Ln t + K
-1/4 Cos² 2t + 1/4 Ln |Cos 2x | + K
kvnmurty:
:-)
Answered by
0
Answer:
hope this answer useful to you
Attachments:
Similar questions