Math, asked by Anonymous, 12 hours ago

Solve the limit:

 \lim \limits_{x \to 3^ + } \dfrac x{[x ]}

Answers

Answered by diwanamrmznu
12

Given:-

 \lim \limits_{x \to 3^ + } \dfrac x{[x ]}

SOLUTION:-

 \lim \limits_{x \to 3^ + } \dfrac x{[x ]}

 \implies \:  if \:   x \to3 \:  \:  \:  \: then  \:  \: h \to \: 0 \\

it means x palace we put (3+h) because we find RHL

  \implies \:  lim_{h \to \:0 }  \:  \frac{3 + h}{[3 + h]}  \\  \\

greatest intiger function:-

  • [2 ]=2

  • [3.8]=3

it means

  • [3+h]=3

 \implies \:  lim_{h \to \: 0}  \:  \:  \:  \:  \frac{3 + h}{3}  \\

put limit to we get

 \implies \:  \frac{3 + 0}{3}  \\  \\  \implies \:   \cancel{\frac{3}{3} } \\  \\  \implies \: 1

______________________________

hope it helps you

Answered by ItzImran
14

Given:

\lim \limits_{x \to 3^ + } \dfrac x{[x ]}

Solution:

 =  \lim \limits_{h \to 0 } \frac {3 + h}{[3 + h ]}

 = \lim \limits_{h \to 0 } \frac {(3 + h)}{3 }

 =  \frac{3 + 0}{3}

 =  \frac{3}{3}

 = 1

Similar questions