Math, asked by sujatabhattacharya10, 9 months ago

Solve the problem.20

Attachments:

Answers

Answered by Anonymous
12

Answer:

x = 1/25

y = 1/2

Step-by-step explanation:

Given :

 \sf \dfrac{log \ x}{log \ 5}  =  \dfrac{log \  {y}^{2} }{log \ 2}  =  \dfrac{log \ 9}{log \  \frac{1}{3} }

Using, Base changing formula, log a / log b = log(b) a

  \Rightarrow \sf  log_{5}x=   log_{2} {y}^{2}  =   log_{ \frac{1}{3} } {3}^{2}

Using a^m = 1 / a^( - m )

  \Rightarrow \sf  log_{5}x=   log_{2} {y}^{2}  =   log_{ \frac{1}{3}  } \dfrac{1}{3^{ - 2}  }

  \Rightarrow \sf  log_{5}x=   log_{2} {y}^{2}  =   log_{ \frac{1}{3}  }  \bigg(\dfrac{1}{3} \bigg)^{ - 2}

Using Power rule log a^m = m.log a

  \Rightarrow \sf  log_{5}x=   log_{2} {y}^{2}  =  - 2  log_{ \frac{1}{3}  } \dfrac{1}{3}

  \Rightarrow \sf  log_{5}x=   log_{2} {y}^{2}  =  - 2

  \Rightarrow \sf  log_{5}x=   - 2 \qquad  log_{2} {y}^{2}  =  - 2

Writing it in exponential form

  \Rightarrow \sf 5^{ - 2}  = x \qquad  {2}^{ - 2} =  {y}^{2}

  \Rightarrow \sf  \dfrac{1}{ {5}^{2} }   = x \qquad   {2}^{ - 1} =  y

  \Rightarrow \sf  x = \dfrac{1}{25}   \qquad y =  \dfrac{1}{2}

Therefore the value of x is 1/25 and value of y is 1/2.

Similar questions