Solve the quadratic equation
(1) 1/a+b+x=1/a+1/b+1/c
Answers
Answered by
2
1/(a+b+x)=1/a + 1/b + 1/x
1/(a+b+x)=(bx+ax+ab)/abx
abx=abx+a2x+a2b+b2x+abx+ab2+bx2+ax2+abx
ax2+bx2+a2x+abx+abx+b2x+a2b+ab2=0
x2(a+b)+ax(a+b)+bx(a+b)+ab(a+b)=0
(a+b)(x2+ax+bx+ab)=0
since, a+b!=0
so, x2+ax+bx+ab=0
x(x+a)+b(x+a)=0
(x+a)(x+b)=0
x=-a,-b
Answered by
0
Answer:
Given :
Now take 1 / x in L.H.S. side :
Taking L.C.M and solving it further :
x² + a x + b x + a b = 0
x ( x + a ) + b ( x + a ) = 0
( x + a ) ( x + b ) = 0
x + a = 0 or x + b = 0
x = - a or x = - b .
Therefore , the value of x is - a or - b .
Similar questions