Math, asked by ras2eemmsadasiatha, 1 year ago

solve the quadratic equation 4x 2 +4bx-(a 2 -b 2 )=0

Answers

Answered by abhi178
5
4x^2+4bx-(a^2-b^2)=0

4x^2+4bx+b^2-a^2=0

(2x+b)^2-a^2=0

(2x+b-a)(2x+b+a)=0

x=(a-b)/2,-(a+b)/2
Answered by Anonymous
0

\huge\mathbb{SOLUTION:-}

\mathtt{4x {}^{2}  + 4bx - \bigg(a {}^{2}  - b {}^{2} \bigg) = 0}

:\implies x {}^{2}  + bx - \bigg( \frac{a {}^{2}  - b {}^{2} }{4} \bigg) = 0

:\implies x {}^{2}  + 2\bigg( \frac{b}{2}\bigg) x =  \frac{a {}^{2}  - b {}^{2} }{4}

:\implies x {}^{2}  + 2\bigg(\frac{b}{2} \bigg)x + \bigg( \frac{b}{2} \bigg) {}^{2}  =  \frac{a {}^{2} - b {}^{2}  }{4}  + \bigg( \frac{b}{2}\bigg){}^{2}

:\implies \bigg(x +  \frac{b}{2} \bigg){}^{2} =  \frac{a {}^{2} }{4}

:\implies x +  \frac{b}{2}  =  \pm \frac{a}{2}

:\implies x =  \frac{ - b}{2}  \pm \frac{a}{2}

:\implies x =  \frac{ - b \:  - a}{2} , \frac{ - b + a}{2}

Hence, \: the \: roots \: are\implies \:  -\bigg( \frac{a + b}{2} \bigg) \: and \: \bigg( \frac{a - b}{2} \bigg)

Similar questions