Math, asked by Anuteddy, 1 year ago

solve the system of linear equation by gauss elimination method 2x+3y-z=5;4x+4y-3z=3;2x-3y+2z=2

Answers

Answered by seelamahit912
2

The solution for the linear equation for x,y,z is 1,2,3

Step-by-step explanation:

Given: 2x+3y-z=5,

4x+4y-3z=3

2x-3y+2z=2

To find: we have to find the values of x,y,z using gauss elimination method.

Formula used: Ax=B is the system of linear equation

The linear equation is 2x+3y-z=5,      (1)

                                     4x+4y-3z=3   (2)

                                     4x+4y-3z=3   (3)

First we have to solve for Z

Take the equation  2x+3y-z=5

z=2x+3y-5

Substitute 2x+3y-5 for z in the (2)  and (3) equation

4x+4y-3(2x+3y-5)=3  

2x-3y+2(2x+3y-5)=2

Now we have to solve the above equation for x and y respectively

4x+4y-6x-9y+15=3

-2x-5y+15=3

rewrite the above equation as

2x+5y=-3+15

2x+5y=12

5y=12-2x

y=\frac{12}{5} -\frac{2}{5} x

 2x-3y+4x+6y-10=2

6x+3y=12

6x=12-3y

x=\frac{12}{6} -\frac{3}{6} y

x=2-\frac{1}{2} y

Substitute  y=\frac{12}{5} -\frac{2}{5} x for y in the equation x=2-\frac{1}{2} y

x=2-\frac{1}{2} (\frac{12}{5} -\frac{2}{5} x)

x=2-(\frac{12}{10}-\frac{2}{10} x)

x=2-(\frac{6}{5} -\frac{1}{5} x)

x=\frac{10-6}{5} +\frac{1}{5} x

x=\frac{4}{5} +\frac{1}{5}x

x-\frac{1}{5} x=\frac{4}{5}

4x=4

x=1

Sub x=1 in the y=\frac{12}{5} -\frac{2}{5} x

y=\frac{12}{5} -\frac{2}{5}

y=2

Sub x=1,y=2 in the equation z=2x+3y-5

z=2(1)+3(2)-5

z=2+6-5

z=8-5

z=3

Therefore the solution for the linear equation is x=1,y=2, and z=3

Similar questions