................solve this .............................................
Attachments:
seth87:
answer is 1
Answers
Answered by
3
Answer:
B) 1
Step-by-step explanation:
Given :
If sin x + sin² x = 1 then,
Value of cos⁸ x + 2cos⁶ x + cos⁴ x is .
Solution :
_
We know that,
sin² x + cos² x = 1
⇒ 1 - sin² x = cos² x,
(a + b)² = a² + 2ab + b²
__
sin x + sin² x = 1
⇒ sin x =1 - sin² x
⇒ sin x = cos² x ..(i)
__
cos⁸ x + 2cos⁶ x + cos⁴
⇒ (cos⁴ x)² + 2(cos⁴ x)(cos² x) + (cos² x)²
⇒ (cos⁴ x + cos² x)²
⇒ ( (cos² x)² + (cos² x) )
⇒ (sin² x + sin x)² (from (i) )
⇒ (1)² = 1 (given)
Similar questions