Math, asked by 9804217566, 1 year ago

solve this ap problem

Attachments:

Answers

Answered by RBT
1
a10 = -37
S6= -27
a10= a+9d
-37= a+9d
S6=n/2(2a+(n-1)d) 
-27=3(2a+5d)
-9=2a + 5d




(-37= a+9d ) 2                     -74=2a+18d
(-9=2a + 5d)⇒⇒⇒⇒⇒        (-9=2a + 5d)
                                             +__-___-_________
                                             -65=13d
                                              d=-5
                                              a=8

_____________Thus use an=a+(n-1)d formula and get 8 terms

Answered by thebananaboy
1
Tenth Term of an Arithmetic Progression = t_{10} = -37
Sum of the first six terms = S_{6} = -27

Let a denote the notation for the first term
Let d denoted the notation for common difference

Now, t_{10} = -37
-37 = a + (10-1)d ... Using formula for n(th) term[
a + 9d = -37

In the same way, find out the Equation for 
S_{6} = -27
-27 =  \frac{6}{2} [2a + (6-1)d]
-27 = 3 [2a + 5d]
\frac{-27}{3} = 2a +5d Moving 3 to the LHS
-9 = 2a + 5d
2a + 5d = -9 ... eq (2)

Multiplying eq. (1) by we get,
2a + 18d = -74 ... eq (3)

Subtracting eq. (2) from (3), we get,
2a + 18d = -74
- 2a + 5d = -9

13d = -65
d =  \frac{-65}{13} = -5

Now that we have got the value of d (common difference) we can calculate the value of "a"

By putting d = -5 in eq. (1) we get,
a + 9 (-5) = -37
a - 45 = -37 
Therefore, a = -37 + 45 = 8

Now that we have got the value of a and d,
S_{8} =  \frac{8}{2} [ 2(8) + (8-1) -5 ]
S_{8} = 4 [16 + 7 (-5) ]
S_{8} = 4 [19]
S_{8} = -19 X 4 = -76

Therefore, the sum of the first 8 terms of an A.P is -76


Similar questions