English, asked by Anonymous, 5 months ago

solve this question..and don't write answer directly​

Attachments:

Answers

Answered by shadowsabers03
10

We need to evaluate,

\displaystyle\longrightarrow I=\int x\,\sin x\,\sin(2x)\,\sin(3x)\ dx

or,

\displaystyle\longrightarrow I=\int x\,\sin(2x)\left[\sin x\,\sin(3x)\right]\ dx

Recall,

  • \sin A\sin B=\dfrac{1}{2}\left[\cos(A-B)-\cos(A+B)\right]

Taking A=x and B=3x,

  • \sin x\sin(3x)=\dfrac{1}{2}\left[\cos(x-3x)-\cos(x+3x)\right]

Then,

\displaystyle\longrightarrow I=\dfrac{1}{2}\int x\,\sin(2x)\left[\cos(x-3x)-\cos(x+3x)\right]\ dx

\displaystyle\longrightarrow I=\dfrac{1}{2}\int x\,\sin(2x)\left[\cos(2x)-\cos(4x)\right]\ dx\quad\quad\left[\,\cos(-x)=\cos x\,\right]

\displaystyle\longrightarrow I=\dfrac{1}{2}\int x\,\sin(2x)\cos(2x)\ dx-\dfrac{1}{2}\int x\,\sin(2x)\cos(4x)\ dx\quad\quad\dots(1)

Let,

\displaystyle\longrightarrow I_1=\int x\,\sin(2x)\,\cos(2x)\ dx

Recall,

  • \sin A\cos A=\dfrac{1}{2}\,\sin(2A)

Then,

\displaystyle\longrightarrow I_1=\dfrac{1}{2}\int x\,\sin(4x)\ dx

Integrating by parts,

\displaystyle\longrightarrow I_1=\dfrac{1}{2}\left[-\dfrac{x}{4}\cos(4x)+\dfrac{1}{4}\int\cos(4x)\ dx\right]

\displaystyle\longrightarrow I_1=\dfrac{1}{32}\sin(4x)-\dfrac{x}{8}\cos(4x)

Let,

\displaystyle\longrightarrow I_2=\int x\,\sin(2x)\,\cos(4x)\ dx

Recall,

  • \sin A\cos B=\dfrac{1}{2}\left[\sin(A+B)+\sin(A-B)\right]

Then,

\displaystyle\longrightarrow I_2=\dfrac{1}{2}\int x\left[\sin(2x+4x)+\sin(2x-4x)\right]\ dx

\displaystyle\longrightarrow I_2=\dfrac{1}{2}\int x\left[\sin(6x)-\sin(2x)\right]\ dx\quad\quad\left[\,\sin(-x)=-\sin x\,\right]

\displaystyle\longrightarrow I_2=\dfrac{1}{2}\int x\,\sin(6x)\ dx-\dfrac{1}{2}\int x\,\sin(2x)\ dx\quad\quad\dots(2)

Let,

\displaystyle\longrightarrow I_{21}=\int x\,\sin(6x)\ dx

Integrating by parts,

\displaystyle\longrightarrow I_{21}=-\dfrac{x}{6}\,\cos(6x)+\dfrac{1}{6}\int\cos(6x)\ dx

\displaystyle\longrightarrow I_{21}=\dfrac{1}{36}\sin(6x)-\dfrac{x}{6}\,\cos(6x)

Let,

\displaystyle\longrightarrow I_{22}=\int x\,\sin(2x)\ dx

Integrating by parts,

\displaystyle\longrightarrow I_{22}=-\dfrac{x}{2}\,\cos(2x)+\dfrac{1}{2}\int\cos(2x)\ dx

\displaystyle\longrightarrow I_{22}=\dfrac{1}{4}\sin(2x)-\dfrac{x}{2}\,\cos(2x)

Then (2) becomes,

\displaystyle\longrightarrow I_2=\dfrac{1}{2}\left(\dfrac{1}{36}\sin(6x)-\dfrac{x}{6}\cos(6x)\right)-\dfrac{1}{2}\left(\dfrac{1}{4}\sin(2x)-\dfrac{x}{2}\cos(2x)\right)

\displaystyle\longrightarrow I_2=\dfrac{1}{72}\sin(6x)-\dfrac{x}{12}\cos(6x)-\dfrac{1}{8}\sin(2x)+\dfrac{x}{4}\cos(2x)\right)

Hence (1) becomes,

\displaystyle\begin{aligned}\longrightarrow I=\ \ &\dfrac{1}{2}\left(\dfrac{1}{32}\sin(4x)-\dfrac{x}{8}\cos(4x)\right)\\-\ \ &\dfrac{1}{2}\left(\dfrac{1}{72}\sin(6x)-\dfrac{x}{12}\cos(6x)-\dfrac{1}{8}\sin(2x)+\dfrac{x}{4}\cos(2x)\right)+C\end{aligned}

\displaystyle\small\text{$\longrightarrow\underline{\underline{I=\dfrac{1}{8}\left(\dfrac{1}{8}\sin(4x)-\dfrac{x}{2}\cos(4x)-\dfrac{1}{18}\sin(6x)+\dfrac{x}{3}\cos(6x)+\dfrac{1}{2}\sin(2x)-x\cos(2x)\right)+C}}$}


Rajshuklakld: splendid :)
amansharma264: Awesome
Similar questions