Math, asked by Mister360, 2 months ago

Solve this..
\tt{} \sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{3+ \sqrt{3} ...} } } } } = x
find the value of x ?​

Answers

Answered by Anonymous
13

3 is the answer

Let x =

\tt{} \sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{3+ \sqrt{3} ...} } } } } = x

On squaring both sides,

 \sf \: x {}^{2}  = 6 +  \sqrt{6 \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6} } } } }

 \sf \: x {}^{2}  = 6 + x

 \sf \: x {}^{2} −x−6=0

  \sf \: x =  \frac{1 +  \sqrt{1 {}^{2} - 4 \times 1( - 6) } }{2(1)}

 \sf \: x =  \frac{1 +  \sqrt{25} }{2}  =  \frac{1 + 5}{2}

 \sf \: ∴x=3 or x=−2

Since , a negative number cannot be under root, hence x = 3

Similar questions