Math, asked by Tommavalo, 1 year ago

solve this this is a question of quadratic equations​

Attachments:

Answers

Answered by Anonymous
7

Question :-

Solve the equation x² - (√3 + 1)x + √3 = 0 by method of completing the square

Solution :-

x² - (√3 + 1)x + √3 = 0

⇒ x² - (√3 + 1)x = - √3

Adding [(√3 + 1)/2]² on both sides

 \sf \implies  {x}^{2} - ( \sqrt{3} + 1)x +   \bigg(\dfrac{ \sqrt{3} + 1}{2}  \bigg)^{2} =  -  \sqrt{3} +  \bigg(\dfrac{ \sqrt{3} + 1}{2}  \bigg)^{2} \\  \\  \\  \sf \implies  {x}^{2} - 2(x) \bigg( \dfrac{ \sqrt{3} + 1}{2}  \bigg) +  \bigg(\dfrac{ \sqrt{3} + 1}{2}  \bigg)^{2}   =  -  \sqrt{3} +  \dfrac{3 + 2 \sqrt{3} + 1}{4} \\  \\  \\  \sf \implies  \bigg(x -  \dfrac{ \sqrt{3} + 1}{2} \bigg)^{2}  =  \dfrac{ - 4 \sqrt{3} + 3 + 2 \sqrt{3} + 1  }{4}  \\  \\  \\  \sf \implies  \bigg(x -  \dfrac{ \sqrt{3} + 1}{2} \bigg)^{2}  =  \dfrac{3 + 1 - 2\sqrt{3} }{4}

  \\  \\  \sf \implies  \bigg(x -  \dfrac{ \sqrt{3} + 1}{2} \bigg)^{2}  =   \bigg(\dfrac{ \sqrt{3} - 1 }{2}  \bigg)^{2}  \\

Taking square root on both sides

 \\  \\   \sf \implies x -  \dfrac{ \sqrt{3} + 1 }{2} =  \pm \bigg( \dfrac{ \sqrt{3} - 1 }{2} \bigg) \\  \\  \\ \sf \implies x  -  \dfrac{ \sqrt{3} + 1}{2} =  \dfrac{ \sqrt{3} - 1}{2}  \:  \: or \:  \: x -  \dfrac{ \sqrt{3} +1 }{2} =   -  \bigg(\dfrac{ \sqrt{3} - 1 }{2} \bigg) \\ \\  \\  \sf \implies x =  \dfrac{ \sqrt{3} - 1}{2} +  \dfrac{ \sqrt{3} + 1 }{2} \:  \: or \:  \: x =  \dfrac{ \sqrt{3} + 1}{2} -  \dfrac{ \sqrt{3} - 1 }{2} \\  \\  \\ \sf \implies x =  \dfrac{ \sqrt{3} - 1 +  \sqrt{3} + 1}{2}  \:  \: or \:  \: x =  \dfrac{ \sqrt{3} + 1 - ( \sqrt{3}  - 1)}{2}

 \\ \\  \sf \implies x =  \dfrac{2 \sqrt{3} }{2}  \:  \: or \: x =  \dfrac{ \sqrt{3} + 1 -  \sqrt{3} + 1 }{2}  \\  \\  \\  \sf \implies x =  \sqrt{3}  \:  \: or \:  \: x =  \dfrac{2}{2}  \\  \\  \\ \sf \implies  x=  \sqrt{3}  \:  \: or \:  \: x = 1

Therefore the value of x is √3 or 1.

Similar questions