some of roots of equation 4^x - 3(2^(x+3)) + 128 = 0 is
a)0
b)7
c)5
d)8
Answers
Answer :
" Option B = 7 " is correct
Solution :
The given equation is
4ˣ - 3(2ˣ⁺³) + 128 = 0
⇒ (2ˣ)² - 3(2ˣ × 2³) + 128 = 0
⇒ (2ˣ)² - 3(2ˣ × 8) + 128 = 0
⇒ (2ˣ)² - 24 (2ˣ) + 128 = 0
⇒ (2ˣ)² - 16 (2ˣ) - 8 (2ˣ) + 128 = 0
⇒ 2ˣ (2ˣ - 16) - 8 (2ˣ - 16) = 0
⇒ (2ˣ - 16) (2ˣ - 8) = 0
Either 2ˣ - 16 = 0 or, 2ˣ - 8 = 0
⇒ 2ˣ = 16 , 2ˣ = 8
⇒ 2ˣ = 2⁴ , 2ˣ = 2³
⇒ x = 4 , x = 3
The roots of the given equation are
x = 4 , x = 3
Hence, the required sum of the roots
= 4 + 3 = 7
Answer:
7
Step-by-step explanation:
4ˣ - 3(2ˣ⁺³) + 128 = 0
(2ˣ)² - 3(2ˣ × 2³) + 128 = 0
(2ˣ)² - 3(2ˣ × 8) + 128 = 0
(2ˣ)² - 24 (2ˣ) + 128 = 0
(2ˣ)² - 16 (2ˣ) - 8 (2ˣ) + 128 = 0
2ˣ (2ˣ - 16) - 8 (2ˣ - 16) = 0
(2ˣ - 16) (2ˣ - 8) = 0
2ˣ - 16 = 0 ", ˣ - 8 = 0
2ˣ = 16 " 2ˣ = 8
2ˣ = 2⁴ " 2ˣ = 2³
x = 4. " x = 3
Sum of both :-
4+3=7.
Option B
Hope it will help you