square root(x)+y=7
square root(y)+x=11
Find trhe value of x and y?
Answers
Answered by
0
y + √x = 11
x - 7 = -√y
(x -7)(x -7) = y
x^2 - 14x + 49 = y
y - 11 = -√x
(y - 11)(y - 11) = x
y^2 - 22y + 121 = x
(x - 7)^4 - 22(x - 7)2 + 121 - x = 0
(x^4 - 28x^3 + 294x^2 - 1372x + 2401) - 22(x^2 - 14x + 49) + 121 - x = 0
x^4 - 28x^3 + 272x^2 - 1065x + 1444 = 0
x = 4
y = 11 - √4
y = 11 - 2
y = 9
x - 7 = -√y
(x -7)(x -7) = y
x^2 - 14x + 49 = y
y - 11 = -√x
(y - 11)(y - 11) = x
y^2 - 22y + 121 = x
(x - 7)^4 - 22(x - 7)2 + 121 - x = 0
(x^4 - 28x^3 + 294x^2 - 1372x + 2401) - 22(x^2 - 14x + 49) + 121 - x = 0
x^4 - 28x^3 + 272x^2 - 1065x + 1444 = 0
x = 4
y = 11 - √4
y = 11 - 2
y = 9
Similar questions