Math, asked by vaibhavd6459, 1 year ago

subtract x+xy+y square from 2x square+3xy

Answers

Answered by DevyaniKhushi
0

{ \boxed{ \boxed{ \huge{[ {2x}^{2} + 3xy] - [ {(x  + xy + y)}^{2} ]}}}} \\  \\ { \boxed{[ {2x}^{2} + 3xy ] - [ {x}^{2}  +  {y}^{2}  +  {x}^{2} {y}^{2} + {2x}^{2}y + 2x {y}^{2}  + 2xy   ] }}\\  \\  { \boxed{{2x}^{2}  + 3xy -  {x}^{2}  -  {y}^{2}  -  {x}^{2}  {y}^{2}  -  {2x}^{2} y  - 2x {y}^{2} - 2xy}} \\  \\  { \boxed{ \red{ \small{{x}^{2}  -  {y}^{2}  -  {x}^{2}  {y}^{2}  -  {2x}^{2} y - 2x {y}^{2}  + xy }}}}

Answered by amankumaraman11
0

 \bf( {2x}^{2}  + 3xy) - {(x + xy + y)}^{2}
 \sf =>  \tiny{( {2x}^{2} + 3xy ) -  [{x}^{2} +  {x}^{2} {y}^{2}  +  {y}^{2}    + 2( {x}^{2}y +  {xy}^{2}  + xy )]} \\  \sf  =  >  \tiny{( {2x}^{2} + 3xy ) - [ {x}^{2} +  {y}^{2}  +  {x}^{2}  {y}^{2} +  {2x}^{2}y +  {2xy}^{2}  + 2xy ]} \\  \sf =  >  \tiny{  \underline{{2x}^{2}}+ 3xy   -    \underline{ {x}^{2}}  -  {y}^{2}   -  {x}^{2}  {y}^{2} -  {2x}^{2} y -  {2xy}^{2}   - 2xy} \\ \sf  =  >   \red{ \tiny{{x}^{2} } + xy  - {y}^{2}  -  {x}^{2}  {y}^{2}  -  {2x}^{2} y -  {2xy}^{2} }
Similar questions