Math, asked by aditipriya83848, 9 months ago

SUM OF ALL THE VALUES OF "X"?​

Attachments:

Answers

Answered by shadowsabers03
2

Given,

\longrightarrow\sf{3^{\left(\log_3x\right)^2}+x^{\log_3x}=162}

\longrightarrow\sf{3^{\log_3x\,\cdot\,\log_3x}+x^{\log_3x}=162}

Since \sf{a^{mn}=(a^m)^n,}

\longrightarrow\sf{\left(3^{\log_3x}\right)^{\log_3x}+x^{\log_3x}=162}

Since \sf{a=b^{\log_ba},}

\longrightarrow\sf{x^{\log_3x}+x^{\log_3x}=162\quad\quad[\,\because\ 3^{\log_3x}=x\,]}

\longrightarrow\sf{2x^{\log_3x}=162}

\longrightarrow\sf{x^{\log_3x}=81}

Taking log to the base \sf{x,}

\longrightarrow\sf{\log_3x=\log_x81}

Since \sf{\log_ba=\dfrac{\log a}{\log b},}

\longrightarrow\sf{\dfrac{\log x}{\log3}=\dfrac{\log81}{\log x}}

\longrightarrow\sf{(\log x)^2=\log3\,\log81}

\longrightarrow\sf{(\log x)^2=\log3\,\log(3^4)}

Since \sf{\log(a^b)=b\log a,}

\longrightarrow\sf{(\log x)^2=\log3\cdot4\log3}

\longrightarrow\sf{(\log x)^2=4\left(\log3\right)^2}

\longrightarrow\sf{\log x=\pm\sqrt{4\left(\log3\right)^2}}

\longrightarrow\sf{\log x=\pm2\log3}

\longrightarrow\sf{\log x=2\log3\quad\ \ OR\quad\ \ \log x=-2\log3}

\longrightarrow\sf{\log x=\log(3^2)\quad\ \ OR\quad\ \ \log x=\log\left(3^{-2}\right)}

\longrightarrow\sf{\log x=\log9\quad\ \ OR\quad\ \ \log x=\log\left(\dfrac{1}{9}\right)}

\longrightarrow\sf{x=9\quad\ \ OR\quad\ \ x=\dfrac{1}{9}}

So there are two possible values for \sf{x.} Hence the sum of all values of \sf{x} is,

\longrightarrow\sf{S(x)=9+\dfrac{1}{9}}

\longrightarrow\sf{\underline{\underline{S(x)=\dfrac{82}{9}}}}

Similar questions