Math, asked by jeffinajoseph123, 9 months ago

Sum of first n terms of an arithmetic sequence is 3n^2-6n.calculate first term and common difference

Answers

Answered by Anonymous
2

Solution:-

   \to  \bf \: s_n = 3 {n}^{2}  + 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (given)

Sum of nth term is :-

 \to \bf \: s_n =  \frac{n}{2} (2a + (n - 1)d)

Now , we get

 \to \bf \:  \frac{n}{2} (2a + (n - 1)d) = 3 {n}^{2}  + 6n

 \to \bf \:  \frac{n}{2} (2a + (n - 1)d )= n(3n + 6)

\to \bf \:  \frac{ \not \: n}{2} (2a + (n - 1)d) =    \not n(3n + 6)

\to \bf \:  2a + (n - 1)d = 2(3n + 6)

\to \bf \:  2a + (n - 1)d = 6n + 12

\to \bf \:  2a + (n - 1)d = 6n + 18 - 6

\to \bf \:  2a + (n - 1)d = 6(n  - 1) + 18

\to \bf \:  2a +d =18 + 6

Comparing both side , we get

=> d = 6

=> 2a = 18

=> a = 9

Also find nth ferm , we get

  \bf \: a_n = a + (n - 1)d

=> 9 + ( n - 1 ) × 6

=> 9 + 6n - 6

=> 3 + 6n

nth term = 3 + 6n

Similar questions